UNESCO-NIGERIA TECHNICAL & VOCATIONAL ==~
EDUCATION REVITALISATION PROJECT-PHASE II || N [s [: []

Introduction to Scientific Programming Using Java

COURSE CODE: COM121
THEORY BOOK

Version 1: December 2008

Introduction to Scientific Programming Using Java Page 1

Table of Contents

General Learning Objectives for Week 1: Java Prognang BasiCS.L........ccceveveveeiecevieeececeeeeee, 5
A Bref HISTOIY Of JAVAL......c.ooiiieceeee ettt ettt s te s e b e s beesaesresreennans 6
RTAT VN = AV TSR 6
TYPES OF JAVA PrOQIAMIS......oi ittt ettt et ettt estesbesseentesseeneeneessestesneensesseeneenes 7

Introduction to Java APPICALIONS.........ccciiieiee et sre e be et e ereenee e 7
Components of a Java Application Programm..........cccceeveiiieeiinieeeesesieseete et 8
Compilation and Execution Of Java ProgramsS........c.ccceceeverineeieniiseeeesivesesseeie e sseessessesssessesseens 12

General Learning Objectives for Week 2: Java Prognang Basics Il.........ccccccovevencncnnnencncnienee, 14

Using Simple GraphiCal INTEITACE...........coviieiiieireee e e 15

General Learning ODbjectives fOr WEEK.3.......c.o et 17
D= 1= B Y o TSI IO - - VTSRS 18
Integers and Floating POINLS ...ttt sttt a et s re e 19
F N 11T Te (o @] oT=T = 1o] €T 20
Precedence of ArithmetiC OPEIratOrS.........cceovririririeieietee sttt e 21
Reference (NON-primitive Data TYPES).....cceeieierereeieieeeeteste et et ee e steseesae e sseeeeseesneensesseeneenseses 22
Variable DECIAIALION.ccoviriiieieie et 24

Using Graphical USEr INtEITACES.........cciviieieiecieeeesteeete ettt ettt re et e st sre et esbe s ereenaeneas 28

General Learning Objectives for Week 4: Programddgyment Techniques.........cccoceeeveevevreeenenee, 32

Program DeVelOPMENT STAQES........ccveceiieeeeiieeterte st ettt ste et et e et et re e s e tesreensestesreessaesesseensenss 33
L (0] 0] =T 0 0T =T0 AV, o SRS 33

General Learning Objectives for Week5: Understaisatiable Classes..........cocvvveveveneinencncnienee. 39
Classes, Objects, Methods and Instance Variables...........ocooooriiirenenieceeeee e 40

INSALIADIE CIASSES......c.iiiiiiieiiicit ettt 41
Declaring a Class with a Method and Instantiatingddject of a Class.......c.cccceceevevveceeveceeieiene, 42
Class CIICIE ..o ettt b s bbb et e b e bt b e sb e bt e bt b e st e b et e e st ebesbenbenee 43
Class CIFCIETEST e ettt et b e bbb bt n et eseese b e 44

Methods and Constructors a DeepPer LAOK..........ccocivieieriiieese ettt 47

General Learning Objectives for Week7: Know the dEConditional Statements............cccccceeneenee. 49
Y o 0T 11] TSRS 50

Introduction to Scientific Programming Using Java Page 2

=Y U o oY ol Yo [T TN 50

Y =To [T o[l =I (AU U <IN T T - 1V 52
Selection STAateMENTS INJAVA c.iiiiiiiiee ettt s e st e e sbe e sbaeesabeesabeeenbaeeeee 52
if SINGlE-SeleCtion StAtEMENTooeeieeeee ettt ettt ee e et e e are e et e e ebeeeebeeeenteeeteeennees 53
if ..else Double-Selection StatemMENL..........cocovireieiririreeee e 53
CoNItiONAl OPEIATON (2) cureiiiieeiieeeie et ete e ettt e et e ste e ettt e e s be e st e e eebeeestbeesabeesabeeebesessseesabeaeeseeesareesases 54
Nested if ...EISE STAtEMENESccuiiiicee e s e st e st e et e e be et e e beenbaereas 55
DaNGHNG-BISE PrOBIEM ...cviciieteete ettt ettt e eve et e e ete e e teestbeeabesasaesaaeeabeenreenreenbeenrens 56
2] o ol 43T OO PP UUPTTOPPP 57
General Learning Objectives for Week8: Know the ldESelection Statements..........ccccecevvrennenee. 59
Thewhile Repetition StAteMENL..........ccccciiiiieeeeee ettt st sre e e s aesnes 60
Formulating Algorithms: Counter-Controlled Repetitionccceeevciiiiicciie e e, 61
General Learning Objectives for Week9: RECUISIQN...........cccoviririeieininenece et 64
RECUISIVE CONCEPEScvviiiiiiiiieiiiiie ettt e e ettt e s sttt e e e e seate e e e sbeeeesasbeeeesastaeessbeeeesanbeeessassstaeessseneesnsenessnnes 65
Example Using ReCUrsion: FACIOMALS..........coeoieieiiiriseeceeene et 66
General Learning Objectives for Week10: Chara@amsStrings.......cccvveveveeneneeceseseeiese e 69
Fundamentals of Characters and StrNgS ... reriececeeerece e 70
WRAL GIrE SEIHNGS 2.ttt e et e s e et e s b e e sa e s e saeesaestesbesseessesseeseensessesseeneas 70
S 1] o TR e o1 ¥ T oY TP 71
String Methods length , charAt and getChars ..o 72
(@00 a0 o X T 4T 1 T =43 73
General Learning Objectives for WEeEKLL: ArTaAYS......ccccevieieieerieieeeseseeiesteesreeeessessessessessessnens 79
AT Y Sttt e aeeeaaeaeaaaaaaaaaanaens 80
Declaring and Creating AITAYSueieicuieeeciireeeeiteeeesireeesseeeesrateeessbaee e e abaeeseeasssaeesastaeeesssteeesnnsenessnnses 81
EXQMPIES USING AITQYS .eiiiiiiiieeciiiiieee e e eeec ittt e e e e e e settte et e e e e e essttaaeeeaeaeasssstaesaaeeeaasasassssasaseassaaasssseseaeesasnnes 83
USING @N AITAY INIEIAIIZEN «.evveeeee et e e e e e e e et e e e e e e e et s reeeeeeeesnnbraeeeaanas 84
Calculating a Value to Store in Each Array EI@MEeNtcocooeeiiiiiii et e e 86
Summing the EIEmMENtS Of QN AMTAY........coviieieiiieceeec ettt se et s saeaesre e 87
General Learning Objectives for Week11l: Event BXIiVPIrOgramsS........ccceeevvevieieevieseseesieseseeseeneens 88
Overview of SWING COMPONENTS.......uiiiiciiee ettt e st e e et e e e e sttr e e e s taaeeseesataeeeeassaeeesssaeeenssneenas 89
Displaying Text and IMages in @ WINGOWueeiiiiiiiiiciiiiiiee ettt e e e e e e e e e esbtree e e e e e e e annraaeee s 90

Introduction to Scientific Programming Using Java Page 3

Labeling GUI COMPONENTES ...ciieiiiciiiieee ettt e e e e e et e e e e e s e ettbe e e e e e e e esastaabraaeeaeeeesnsssaeeeaeeesansraseeaanns 90

Text Fields and an Introduction to Event HandlinthviNested Classes........c.ccoccevvvinenencriceenene 92
Creating the GUI......eiic et e e e et e e e e et e e e s atataeeeebtaeesanbaeeesantaeeesseaeesansaeeesnns 96
Steps Required to Set Up Event Handling for a GUI COMPONENtccevcuiieiiiciiee i 96
Using a Nested Class to Implement an Event Handlercoooviie it 97
Registering the Event Handler for Each Text Field...........uvviiieiiiccceeee e 98
Details of Class TextFieldHandler 's actionPerformed Method.....c.ccoeevieinieircieeee. 98
General Learning Objectives for Week14: INherianc.cccovveeeeieviiieciene e 100
INtroduction to INREILANCEooiiiee et nee s 101
SUPErClasses aNd SUDCIASSES ...ceiiiiiiiiiiiie ettt e e e e e e e e e e s e abrra e e e e e s esassraeeeeeeesanrrnns 102
Relationship between Superclasses and SubCIasses..........cocovoirininencic e 104
Creating and Using @ COMMISSIONEMPIOYEE Classcecveuiriiriiriiieieinesesesee e 105
CommissionEmployeeBasePlusCommissionEmployee lidmee Hierarchy Using private Instance
VAIADIES ...ttt 111
General Learning Objectives for Week15: PolymGBPhL........ccoiveieiiiiiinneceeeeeceeeeeiene 115
Lo YAV 0 Vo T o] o1 £ o SRR 116
POIYMOIPRISIN EXGMIPIES ..eviiiiiieeciieiee et e e e e e et e e e e e e e e atbeebbaeeeaeeeesasntaeeeeeesesnsrareeaanns 118
Demonstrating Polymorphic BENAVIOT..........eii ittt e e e s tte e e e e aae e e sentaeeeeanes 119
Abstract Classes and MethOdScc.eeiiiiiiiiienieee e et 122
Creating Abstract Superclass EMPIOYEE ..o 125
Creating Concrete Subclass SalariedEMPIOYEE ..o 128

Introduction to Scientific Programming Using Java Page 4

General Learning Objectives for Week 1: Java Progrenming Basics |

Specific Learning Objectives:

Brief History of Java

Features of Java Programming Language

Identify basics of OOP (Object Oriented Programming
Identify the types of Java Programs

Identify the components of a Java Program

® O oo

Introduction to Scientific Programming Using Java Page 5

A Brief History of Java
Java is arDbject Oriented Programmidanguage developed by the team of James Gosling,

Patrick Naughton, Chris Warth, Ed Frank, and Mikerglan at Sun Microsystems in 1991. This
language was initially called “Oak” but was renamidava” in 1995. The name Java came about
when some Suns people went for a cup of coffedlt@mdame Java was suggested and it struck.

Java was developed out of the rich experienceseoptofessionals who came together to design
the programming language thus, it is an excellesggramming language. It has similar syntax to
C/C++ programming languages but without it comglegi Java is an elegant programming

language.

Java was initially developed for programming inggdht electronic devices such as TVs, cell
phones, pagers, smart cards etc. Unfortunatelgxpectations of the Suns team in this area did
not develop as they envisaged. With the advert®frt the boom of theiternetand théNorld
Wide Web (WWW) the team changed their focus and Java was deacklop developing web

based applications. It is currently being usedeawetbp a variety of applications.

Why Java?
Thousands of programmers are embracing Java gsdfgeamming language of choice and

several hundred more will joining before the endhaf decade. Why is this so? The basic

reasons for these are highlighted below:

a. Portability: Java is a highly portable programming languagabse it is not designed
for any specific hardware or software platform.alavograms once written are translated
into an intermediate form calléd/tecode The bytecode is then translated by ihea
Virtual Machine (JVM)into the native object code of the processort@aprogram is
been executed on. JVMs exist for several compu&tfopms; hence the terivrite Once
Run Anywherg WORA).

b. Memory Management: Java is very conservative with memory; once a nesois no
longer referenced the garbage collector is catla@¢laim the resource. This is one of
the elegant features that distinguishes Java frd@+€where the programmer has to

“manually” reclaim memory.

Introduction to Scientific Programming Using Java Page 6

C.

Extensibility: The basic unit of Java programs is thess Every program written in

Java is a class that specifies the attributes ehdwors of objects of that class. Java
APIs (Application Programmers Interfaceontains a rich set reusable classes that is
made available to the programmers. These claseeg@uped together as packages from
which the programmer can build new enhanced clags®es of the key terms of object
oriented programming is reuse.

Secure:Java is a very secure programming language. alesdapplets) may not
access the memory on the local computer that treeg@vnloaded upon. Thus it
provides a secure means of developing interneicgtjans.

Simple: Java’s feature makes it a concise programminguiangeg that is easy to learn and
understand. It is a serious programming languagiee#isily depicts the skill of the
programmer.

Robustness:Java is a strongly typed programming languageeacdurages the

development of error free applications.

Types of Java Programs
Java programs may be developed in three ways. Whklye mentioned briefly here:

a.

Java Applications: These are stand-alone applications such word gsocg, inventory
control systems etc.

Java Applets: These programs that are executed within a brow$ey are executed on
the client computer.

Java Serverlets:These are server side programs that are execiitieid & browser.

In this course we will limit ourselves to only thest two mentioned types of Java programs —

applications and applets.

Introduction to Java Applications
As earlier described Java applications are stamsnegbrograms that can be executed to solve

specific problems. Before delving into the detailsvriting Java applications (and applets) we

will consider the concept on which the languageased upon bein@bject Oriented

Programming (OOP).

Introduction to Scientific Programming Using Java Page 7

Object Oriented Programmirng a methodology which has greatly revolutionihesv programs
are designed and developed as the complexitie$viedan programming are increasing. The

following are the basic principles of OOP.

a. Encapsulation: Encapsulation is a methodology that binds togedlaéx and the codes
that it manipulates thus keeping it safe from exdémterference and misuse. An object
oriented program contains codes that may haveterim@mbers that are directly
accessible to only the members of that prograno Almay have program codes
(method$ that will enable other programs to access theszid a uniform and controlled
fashion.

b. Polymorphism: Polymorphism is a concept whereby a particulaintthmay be
employed in many forms and the exact implementasatetermined by the specific
nature of the situation (or problem). As an exampdssider how a frog, lizard and a fish
move (“the interface”) from one place to anothefrédg may leap ten centimeters, a
lizard in a single movement moves two centimetasashark may swim three meters in
a single movement. All these animals exhibit a cammbility — movement — expressed
differently.

c. Inheritance: Inheritance is the process of building new cladssed on existing classes.
The new class inherits the properties and attrébafehe existing class. Object oriented
programs models real world concepts of inheritaRoe.example children inherit
attributes and behaviors from their parents. Thébates such as color of eyes,
complexion, facial features etc represent the di@hdan java. Behaviors such as being a
good dancer, having a good sense of humor etcsepréhe methods. The child may

have other attributes and behaviors that diffeagatinem from the parents.

Components of a Java Application Program
Every Java application program comprises of a adastaration header, fields (instance

variables — which is optional), the main method sederal other methods as required for
solving the problem. The methods and fields armbess of the class. In order to explore these

components let us write our first Java program.

Introduction to Scientific Programming Using Java Page 8

/~k
* HelloWorld.java
* Displays Hello world!!! to the output window

*

*/
public class HelloWorld I class definition header
{

public static void main(String[] args)

{

System.out.printin(“Hello World!!! *);// print text
} // end method main

} // end class Helloworld

Listing 1.0 HelloWorld.java

The above program is a simple yet complete programtaining the basic features of all Java
application programs. We will consider each of éhismtures and explain them accordingly.
The first few lines of the program are comments.

/~k
* HelloWorld.java
* Displays Hello world!!! to the output window

*

*/

The comments are enclosed between the /* */ sysabol

Comments are used for documenting a program, shédri passing across vital information
concerning the program — such as the logic beipdjeah name of the program and any other
relevant information etc. Comments are not exethiethe computer.

Comments may also be created by using the // syswditbler at the beginning of a line:

/I This is a comment

Or on the same line after with an executable staténTo do this the comment must be written
after the executable statement and not beforetledsprogram statement will be ignored by the
computer:

System.out.printin(“Hello World!!! “); // in-line comment.

Introduction to Scientific Programming Using Java Page 9

This type of comment is termed as an in-line conmmen
The rest of the program is the class declarati@ntisg with the class definition header:

public class HelloWorld, followed by a pair of opening and closing curhadkets.

{
}

Theclass definition head@lass definition header starts with thecess modifigoublic
followed by the keywordlassthen the name of the cladglloWorld . The access modifier tells
the Java compiler that the class can be accesssid®the program file that it is declared in.

The keywordclasstells Java that we want to define a class usiaghime HelloWorld.

Note: The file containing this class must be sav&dg the name HelloWorld.java. The name of
the file and the class hame must be the same batfypitalization and sequence. Java is very
case sensitive thus HelloWorld is different fronicneorld and also different from
HELLOWORLD.

The next part of the program is the declaratiothefmain methodviethodsare used for

carrying out the desired tasks in a Java prograey, are akin to functions used in C/C++
programming languages. The listing:

public static void main(String[] args)

{
}

is the main method definition header. It startdwite access modifier public, followed by the
keywordstaticwhich implies that the methadain() may be called before an object of the class
has been created. The keyweordd implies that the method will not return any vabre
completion of its task. These keywords public,istand void should always be placed in the

sequenced shown.

Any information that you need to pass to a metlsagceived by variables specified within the
set of parentheses that follow the name of the atethhese variables are callegrameterdf
no parameters are required for a given methodsyiiuneed to include the empty parentheses.

In main() there is only one paramet&tring[] args, which declares a parameter naraegs.

Introduction to Scientific Programming Using Java Page 10

This is an array of objects of tyfstring. (Arrays are collections of similar objects.) Objects of
type String store sequences of characters. In this cags,receives any command-line
arguments present when the program is executee. tNat the parameters could have been
written asString args[]. This is perfectly correct.

The instructions (statements) enclosed within tiéydraces will be executed once the main
method is run. The above program contains theuattm that tells Java to display the output
“Hello World!"!” followed by a carriage return. Thiinstruction is:

System.out.printin(“Hello World!"!”); //print te xt

This line outputs the string "Java drives the Wébllowed by a new line on the screen.
Output is actually accomplished by the builpmntin() method. In this caseyintin()

displays the string which is passed to it. As yoli see,printin() can be used to display
other types of information, too. The line beginshv@ystem.out While too complicated to
explain in detalil at this time, brieflgystemis a predefined class that provides access to the
system, anaut is the output stream that is connected to the den$bus,System.outis an
object that encapsulates console output. The Hattiava uses an object to define console

output is further evidence of its object-orientedune.

As you have probably guessed, console output (@mat)i is not used frequently in

real-world Java programs and applets. Since modemocomputing environments are
windowed and graphical in nature, console I/O sdusiostly for simple utility programs and for
demonstration programs. Later you will learn otlvays to generate output using Java, but for
now, we will continue to use the console I/O methaddiotice that therintin() statement ends
with a semicolon. All statements in Java end wiemicolon. The reason that the other lines in

the program do not end in a semicolon is that #reynot, technically, statements.

The first closing brace -}- in the program emdain(), and the last } ends théelloWorld
class definition; it is a good practice to placeoanment after the closing curly brace. The
opening and close brace are referred to as a bloctde.

One last point: Java is case sensitive. Forgettiisgcan cause you serious problems. For

example, if you accidentally typdain instead ofmain, or PrintLn instead ofrintin , the

Introduction to Scientific Programming Using Java Page 11

preceding program will be incorrect. Furthermoitthaugh the Java compileill compile

classes that do not contaimain() method, it has no way to execute them. So, if yaa h
mistypedmain, the compiler would still compile your program. \idever, the Java interpreter
would report an error because it would be unabfentbthemain() method.

In the above program some lines where left blamik,was done in order to make the program
readable. Furthermore, tabs (indentation) were ts&dthin the body of a class or methods as
appropriate to spate characters and symbols. Emklspaces, tabs, and newline characters are

referred to as white spaces.

Compilation and Execution of Java Programs
As earlier mentioned in this text we will creatdyotwo types of Java programs — applications

and applets. In the next few paragraphs the stepsditing, compiling and executing a Java

programs. The procedures for Java application aud dpplets are basically the same. The major

difference is that Java applets are executed wéhirowser.

The basic steps for compiling and executing a pavgram are:

a. Enter the source code using a text editor. Henfilest be saved using thiee extension.java.

b. Use the Java compiler to convert the source code hytecode equivalent. The byte code
will be saved in a file having the same name aptbhgram file with an extension .class. To
compile our HelloWorld.java program, type the feliag instructions at the Windows
command prompt (c:\>): javac HelloWorld.java
The bytecodes (.class file) will be created onlthdre are no compilation errors.

c. Finally use the Java interpreter to execute thdéicgion, to do this at the Windows command
prompt (c:\>) type: java HelloWorld. (You need mygpe the .class extension)

e -, e ~ e -,

Text Editor Java Compiler Java Interpreter
7 B 7 B 7 B

e Enter Java e Converts source e Executes Java
Source Code code to Java Bytecodes by
Bytecodes converting it
to Machine
Codes
- v - v - v

Introduction to Scientific Programming Using Java Page 12

Figure 1.0 Java Compilation and execution process.

Note: Other programs, callddtegrated Development Environments (IDEs), have been created
to support the development of Java programs. IREsne an editor, compiler, and other Java
support tools into a single application. The spec¢dols you will use to develop your programs
depend on your environment. Examples of IDEs inelNétBeans, Eclipse, BlueJ etc.

Introduction to Scientific Programming Using Java Page 13

General Learning Objectives for Week 2: Java Progrenming Basics Il

Specific Learning Objectives:
Objectives

f. Using Simple Graphical User Interface
g. Apply Graphical Classes

Introduction to Scientific Programming Using Java Page 14

Using Simple Graphical Interface

This week we will employ simple graphical classelOptionPane to repeat the same programs
which we implemented in week one. In the prograesented in week one the output was
presented to the windows command prompt.

The JOptionPane class (javax.swing package) entidasser to use its static methods
showInputDialog and showMessageDialog to accepat aadl display information graphically.

The HelloWorldGUI.java which implements JOptionPatetic methods for displaying hello
world to the user is presented below:

Figure 2.1 HelloWorldGUI.java

1
2
3
4
5
6
7

import javax.swing.JOptionPane;

8

9 public class HelloWorldGUI {

10 public static void main(String[] args) {

11 String msg = "Hello Wolrd" :

12 String ans = "

13

14 JOptionPane.showMessageDialog(null , msg);

15

16

1 ans = JOptionPane.showlnputDialog(null , "Enter your Name Please"
);

1

19

20 JOptionPane.showMessageDialog(null , "Hello" +ans);
21

22 }

23

24}

Line 7 we imported he JOptionPane class so that\h& will ensure that we use it promperly.
The class definition header is presented in linBh®s is followed by the main method header
which must be mus be written this way it is presdnh line 10. Two string variables are used,

one for displaying output — msg — and the otheirfput —ans-. The Graphical message is

Introduction to Scientific Programming Using Java Page 15

displayed with “Hello World” and a command butiabeled ok shown. The user is requested to

enter his/her name (line 17) and a hello messatfethhe name enter is displayed —(line 20).

The outputs of the program are presented below.

Message

‘o | Enter your Name Please
Hello Wolrd i
\Babhy |

0K 0K Cancel

| Message ﬁ

@ Hello Bobby

oK

Figure 2.2 sample output of HelloWorldGUl.java piam.

Introduction to Scientific Programming Using Java Page 16

General Learning Objectives for Week 3:

Specific Learning Objectives:

h. Know Java Data Types.
Know Java ldentifiers and Reserved Words.
Know Memory Allocation Concepts.
Give the general format of arithmetic expression.
Know operator precedence rules.
. Be able to evaluate simple and complex arithmegpression.
Understand the concept of Data Conversion.

Introduction to Scientific Programming Using Java Page 17

Data Types in Java
A data typedefines a set of values and the operations tmabealefined on those values. Data

types in Java can be divided into two groups:
a. Primitive Data Types
b. Reference Data Types (or Non-Primitives)

Data types are especially important in Java beciisa strongly typed language. This means
that all operations are type checked by the comfoletype compatibility. lllegal operations

will not be compiled. Thus, strong type checkingpegrevent errors and enhances reliability.
To enable strong type checking, all variables, esgions, and values have a type. There is no
concept of a “type-less” variable, for example.tRarmore, the type of a value determines what

operations are allowed on it. An operation alloweadne type might not be allowed on another

Primitive Data Types
The termprimitive is used here to indicate that these types areljetts in an object-oriented
sense, but rather, normal binary values. Theseitprentypes are not objects because of

efficiency concerns. All of Java’s other data types constructed from these primitive types.

Java strictly specifies a range and behavior fohgaimitive type, which all implementations

of the Java Virtual Machine must support. Becadskawea’s portability requirement, Java is
uncompromising on this account. For examplepans the same in all execution environments.
This allows programs to be fully portable. Theraasneed to rewrite code to fit a specific
platform. Although strictly specifying the sizetbe primitive types may cause a small loss of
performance in some environments, it is necessaoyder to achieve portability.

There are eight primitive data types in Java: Bulbysets of integers, two subsets of floating
point numbers, aharactedata type, and laooleandata type. Everything else is represented

using objects. Let's examine these eight primitieg¢a types in some detalil.

Introduction to Scientific Programming Using Java Page 18

Integers and Floating Points
Java has two basic kinds of numeric values: insegehich have no fractional part, and floating

points, which do. There are four integer data typgts, short int, andlong) and two floating
point data typesflpat anddoublg. All of the numeric types differ by the amountroémory
space used to store a value of that type, whiokrohétes the range of values that can be
represented. The size of each data type is the &ara# hardware platforms. All numeric types
aresigned, meaning that both positive and negative valuesbeastored in them. Figure 3.0

summarizes the numeric primitive types.

Type Storage Minimum Value Maximum Value

byte 8 bits -128 127

short 16 bits -32,768 32,767

int 32 bits —-2,147,483,648 2,147,483,647

long 64 bits -9,223,372,036,854,775,808 9,223,372,036/85,807

float 32 bits Approximately —3.4E+38 Approximately 3.4E+38
with 7 significant digits with 7 significant digits

double 64 bits Approximately —1.7E+308 | Approximately 1.7E+308
with 15 significant digits with 15 significant digits

Table 3.0 List of Java’s in-built numeric primitidata types.

When designing a program, we sometimes need tatedut about picking variables of
appropriate size so that memory space is not waBtexample, if a value will not vary
outside of a range of 1 to 1000, then a two-byteger €hor) is large enough to accommodate
it. On the other hand, when it's not clear whatrémege of a particular variable will be, we
should provide a reasonable, even generous, ansbgpace. In most situations memory space
IS not a serious restriction, and we can usuafiyrdfgenerous assumptions. Note that even
though &loat value supports very large (and very small) numbeasly has seven significant
digits. Therefore if it is important to accuratehaintain a value such as 50341.2077, we need
to use alouble

A literal is an explicit data value used in a program. Theua numbers used in programs

such as Facts and Addition and Piano Keys aiatafjer literals.

Introduction to Scientific Programming Using Java Page 19

Java assumes all integer literals are of igpeunless an L or | is appended to the end of the
value to indicate that it should be consideredesdl of typelong, such as 45L.

Likewise, Java assumes thatfédating point literals are of typedouble If we need to treat a
floating point literal as #oat, we append an F or f to the end of the valuen &7418F or
23.45f. Numeric literals of typgoublecan be followed by a D or d if desired.

The following are examples of numeric variable deations in Java:

int marks = 100;

bytesmallNol, smallNoZ2;

longtotalStars = 86827263927L,

floatratio = 0.2363F;

doublemega = 453.523311903;

Arithmetic Operators
Arithmetic operators are special symbols for caigyout calculations. These operators enable

programmers to write arithmetic expressions.eXpressions an algebraic like term that
evaluates to a value; it comprises of one or mpexands (values) joined together by one or
more operators. Below is a summary of Java aritttnogierators in theiorder of precedence

that is, the order in which the arithmetic expressare evaluated.

Introduction to Scientific Programming Using Java Page 20

Order of Algebraic Java
Precedence Operator Symbo| Expression Expression Association
Multiplication * axc a*c Left to Right
Division / xlyorx+yor | xly Left to Right
First x
v
Modulus or % w mod 3 w % 3 Left to Right
Remainder
Addition + d+p d+p Right to Left
Second : : : :
Subtraction - j—2 j-2 Right to Left

Table 3.1 Operators, precedence and associatiopevators.

Precedence of Arithmetic Operators
The order in which arithmetic operators are apptiediata values (operand) is termed rules of

operator precedence. These rules are similar tftegebra. They enable Java to evaluate
arithmetic expressions consistently and correctly.

The rules can be summarized thus:

a. Multiplication, division and modulus are appliedsti Arithmetic expressions with
several of these operators are evaluated fromethéol the right.

b. Addition and subtraction are applied next. In tiieation that an expression contains
several of these operators they are evaluated rfiigithto left.

The order in which the expressions are evaluateefésred to as their association. Now let us
consider some examples in the light of the rulegparator precedence; we will list both the

algebraic expression and the equivalent java eges

X+y+z
Algebra : 3
Java: (x+y+2)3;

This expression calculates the average of thraeegallhe parentheses is required so that the
values represented by x, y and z will be addedtla@desult divided by three. If the parentheses
is omitted only z will be divided by three becadsasion has a higher precedence over
addition.

Algebra: y=mx+c

Introduction to Scientific Programming Using Java Page 21

Java: y=m*Xx+c;

In this case the parentheses is not required becaukiplication has higher precedence over
addition.

Algebra: z=pr%q+wx-y

Java: z=p*r%q+w/x-y;

In this example, the expression contains the opesét % followed by +, / and -. The order of
execution is listed below:

b P 1 k
S % q by S by
sstepd ssteps

Note: the order of precedence may be overwrittendnyg parentheses, that is to say if we

desire addition before multiplication or divisiaor example we can include the that part of the
expression in parentheses. In the above expreskiony is written as (x —y), then the value
represented by the y will be subtracted from thiat thhen the result will be divided by w.

Exercises
Show the order of execution the following arithmedkpressions and write their Java

equivalents:

+ \
a= ——{4+1x)
2

c=w—2d*-

il f+2
iii. r=2c 4 Wi ,2

iv. y=mx +3b

V. T=4r+d mod 4

Reference (Non-primitive Data Types)
Reference or non-primitive type data is used toasgnt objects. An object is defined by a

class,which can be thought of as the data type of theatibjrhe operations that can be

Introduction to Scientific Programming Using Java Page 22

performed on the object are defined by the metlhotise class. The attributes or qualities of
the objects of a class are defined by the fielddieh in essence are primitive type data values.
Every object belongs to a class and can be refedensingdentifiers An identifier is a name
which is used to identify programming elements saslmemory location, names of classes,
Java statements and so on. The names used foifydenmemory locations are commonly
referred to as memory variables or variables fortsh

Variable names are created by the programmer foesenting values to be stored in the
computer memory. Each memory location is associatéda type, a value, and a name.
primitive data such as int (integer) can hold gl&rvalue and that value must correspond to the
data type specified by the programmer. Referenteetgpes on the other hand contain not the
objects in memory but the addresses of where tfeetsh(their method and fields etc) are stored
in memory. Examples of reference data types incardeys, strings and objects of any class

declared by the programmer.

Pertinent data about any object can be gatheredsettito represent attributes (fields) and
tasks the objects can perform (methods) by usiwglbdefined interface. Once a class has been
declared several objects can be created from é@.objects protect their own data and it cannot

be directly accessed by other objects.

In the next section we will summarized the rulesd@ating variables in Java.

a. Variables names may start with and alphabet (A-Z) and he remaining characters may
be, an underscore () or a dollar sign, or a nurfdyezxample sum, counter, firstName, bar2x
amount_Paid are all valid variable names. 9x, Gvahe invalid.

b. Embedded blank spaces may not be included in ‘arrebmes though an underscore
may be used to join variable names that comprisesrapound words. Example x 10 is not
valid, it could be written as x_10 or x10.

C. Reserved words (words defined for specific useaira)) may not be employed as
variables names. Example loop, do, for, while, clwdre reserved.

d. Special symbols such as arithmetic operators, cona, /, ! are not allowed.

e. Variable name may be of any length.

Introduction to Scientific Programming Using Java Page 23

It is a good programming practice to use namesitilitate the meaning of the value it
represents. For amountPaid, or amt_paid can bly easiembered that it represent an amount
paid value. Though if the programmer had usedas the variable name it would still have
been valid.

Java is a case sensitive programming languagehkysrogrammer must be very careful and
consistent when giving and using variable names dastinguishes between upper case
(capital) letters and lower case letters (smaléte) hence ‘a’ is different from ‘A’ as far as dav

is concerned.

Exercises: Study the variable names below and ateliwvhether they are valid or not. If invalid
give reasons.

&maxium

X

a

b

C. Absolute temperature
d

e

f.

Money

30yearold

initVolume

Variable Declaration
Variable may represent values that are expectelange or not during the execution of a

computer program. When declaring variable namesaebpe (visibility) of variables from other
part of the program may be specified, the typeavé dhat should be stored in the area of

memory.

Variable names may also represent either primdata or reference data. The general form for

creating or declaring variable is presented below.

accessModifier dataType variableList
Where:
accessModifierdetermines the visibility of the variable to otlpart of the program e.g. public

or private.

Introduction to Scientific Programming Using Java Page 24

dataType represents either primitive (int, char, floatyeference type data (array, String).
variableList is one or more valid variables separated usinghcas

Examples:

a. private int x, vy, z;

In this example the access modifier is private,da type is int and the variables that are
permitted to hold integer values are the idensfiery and z. similar pattern is applied in other
examples below.

b. private float balance, initTemperature;

C. private boolean alreadyPaid;

d. public long population;

Alternatively the initial values to be stored irettmemory may be specified when declaring the
variables. The general form for declaring and atizing the variables is presented below:

accessModifier dataType variablel= valuel, variablealue2, ... , variable = valuen;
We will illustrate with examples.

private int x = 10;

private inta=0, b=0, c=0;

public double amountLoaned = 100;

Note: we declaring variables in a method (e.g. ma@thod) do not include the access
modifiers because all variables declared in metlaodsmplicitly private hence localized to that

method. The examples given above can be useddteanstance variables

Now let us write a program to put together all thhathave learnt. The program listing below
demonstrates how to create primitive variableg @nd non-primitive variable (of type
Scanner). It demonstrates how to write arithmetmressions, input and output data from the

user.

/~k

* AddTwoNo.java

* Add any two integer numbers
*/

Introduction to Scientific Programming Using Java Page 25

import java.util.Scanner;
public class AddTwoNo {

public static void main(String[] args) {
/I declare primitive variables
int firstNumber = 10;
int secondNumber = 20;
int sum = 0;

sum = firstNumber + secondNumber;

system.out.printin("Sum of " + firstNumbel and " +
secondNumber + "is " + sum);

/[declare reference variable of type Seann
Scanner input = new Scanner(System.in);

/I Accept values from the user
System.out.printin("Enter first integemnioer please ");
firstNumber = input.nextint();

System.out.printin("Enter second integember please ");
secondNumber = input.nextint();

/[calculate sum and display result
sum = firstNumber + secondNumber;

System.out.printin("Sum of " + firstNumbef and " +
secondNumber + " is " + sum);

} // end of method main

} // end of class AddTwoNos

Listing 3.1 — AddTwoNos.java
Now let us dissect the program. We will only payticalar attention to parts of the program

that were introduced.

After the main comments at the beginning of thegpam, just before the class declaration we
have the statement import statement. This statermahivays placed before the class

declaration:

Introduction to Scientific Programming Using Java Page 26

import java.util. Scanner;

This statement instructs Java to include the Saampart of our program so that it will be able
to ensure that we use the elements of this clagsedy. A collection of classes are grouped
together in Java for ease of usage and to faeilgaftware reuse. A collection of classes
grouped together are referred to as a packageScaener class is a member of the java.util
package. By importing classed and using them irctagses makes Java a robust programming

language.

Next is the class definition header, then the ma&thod definition header both of which we
have discussed earlier. Within the main methodetloeal variableof type int (integer) are
declared. It is advisable to declare individualafales on separate tine as this enhances
readability, a plus during debugging.

/I declare primitive variables

int firstNumber = 10;

int secondNumber = 20;
int sum = 0;

The next instruction is an arithmetic expressiat ttalculates the sum of the first and second

numbers and assigns the resulting values to sum.

sum = firstNumber + secondNumber;

In order for our program to permit the user to emtdues via the standard input stream using an

object the Scanner class (input).

Scanner input = new Scanner(System.in);

Let us tarry a little while and study this statemi@ndepth. The first part of the expression:
Scanner input; declares an object reference infpelaes Scanner; the second part of the
expression instructs Java to create the objeceimany using the new keyword that calls a
special methodcpnstructoy to initialize fields of the class to initial vada. This single

statement may be broken down into two:

Introduction to Scientific Programming Using Java Page 27

Scanner input; Il declares the variable

input = new Scanner(System.in); // creates an instance (object) of the Scanassc

Before the user enters any value, he is prompteordingly; this is achieved through the use of
the println statement. The first and second pristaiiements prompts the user for the first and
second integer numbers respectively.

The statement

firstNumber = input.nextint();

instructs the computer to read an integer value fitee keyboard. To achieve this, the nextint()
method of the Scanner class was invoked using pctoteference input.
After accepting the integer numbers from the ulsersum is calculated as before and then

displayed to the output window.

Using Graphical User Interfaces
The entire program we have written so far has igudr displayed prompts to the user via the

output window. In most real world programs, thidl wot be the case. Most modern
applications display messages to the user usingomia — dialog boxes — and use same to
accept data from the user. In our next exampleyivemprove on the addition program by
using dialog boxes.

/*

* AddTwoNoDialog.java

* Add any two integer numbers
*/

import javax.swing.JOptionPane;
public class AddTwoNoDialog {

public static void main(String[] args) {
/I declare primitive variables
int firstNumber = 10;
int secondNumber = 20;
int sum = 0;

Introduction to Scientific Programming Using Java Page 28

String input; // for accepting input frdire user
String output; // for displaying output

/I Accept values from the user
input = JOptionPane.showlInputDialog(ntHnter first integer number",
"Adding Integers", JOptionPane.QUEIN_ MESSAGE);

firstNumber = Integer.parselnt(input);

input = JOptionPane.showlInputDialog(nulinter second integer number”,
"Adding Integers”, JOptionPane.QUEIN_ MESSAGE);

secondNumber = Integer.parselnt(input);

/[calculate sum and display result
sum = firstNumber + secondNumber;

// build output string
output = "Sum of " + firstNumber + " and'secondNumber + " is "
+ sum;

/I display output
JOptionPane.showMessageDialog(null, outAdding two integers",
JOptionPane.INFORMATION_MESSAGE);

} // end of method main
} // end of class AddTwoNos

Listing 3.2 AddTwoNoDialog.java

In this program, we imported the JOptionPane dlpaskage javax.swing). JOptionPane
contains severaitatic methodandstatic fields some of which was implemented in the listing
3.2.

Let us go through the program and see how it walkes will only emphasize new concepts that
were introduced. In the program we imported thptifdPane class (javax.swing package).
This will ensure Java loads the class and that aleemuse of the features of the class properly.

This class enables us to create objects that gsplialog boxes for both input and output.

Two string variables for handling both input andpat were declared using the statements:

String input; // for accepting input frahe user

Introduction to Scientific Programming Using Java Page 29

String output; // for displaying output

To accept the input from the user we employed tagcsnethodshowlnputDialog() of the
class JOptionPane. The code is represented below:

/I Accept values from the user
input = JOptionPane.showInputDialog(ntHnter first integer number”,
"Adding Integers”, JOptionPane.QUEIN_MESSAGE);

showlnputDialog method always returns a string @dhus we have to assign it return value to
the string variable input. The first parameter &amill value which implies that the dialog box
will be displayed in the middle of the computereser. The next parameter is the prompt-
message- in this case “Enter first integer numkfelipwed by the title that will be displayed as
the title of the dialog box see figures 3.1a arid 3the final parameter specifies the icon to be
displayed.

Each value entered by the user and assigned t@tfable input is the wrapped into an integer
using thewrapper class Integerhis is one of the wrapper classes that is usedroert

primitives to their object equivalent and vice \&evgere entered by the user is assigned

r N ki | g Tl
Adding Integers Lﬁ Adding Integers ﬁ
? Enter first integer number < | Enter second integer number
12 | : 23] |
OK Cancel OK Cancel |
e | - "
Figure 3.1a Figure 3.1b
Adding two integers Iﬁ
'(D Sum of 12 and 23 is 35
OK
Figure 3.3c

/Il display output
JOptionPane.showMessageDialog(null, outAdding two integers",
JOptionPane.INFORMATION_MESSAGE);

Introduction to Scientific Programming Using Java Page 30

Introduction to Scientific Programming Using Java Page 31

General Learning Objectives for Week 4: Program Deglopment Techniques

Specific Learning Objectives:

0. Understand the concept developmental techniqupsogfam development.
p. Know how to input and output data using graphicarunterfaces
g. Apply arithmetic operators in manipulating inputala

Introduction to Scientific Programming Using Java Page 32

Program Development Stages
Programming in any programming language is nosh tiaat should be trivialized as mere entry

of code into the computer. In order to develop stland efficient applications the
developer/programmer must follow certain steps. tNdeginning programmers simply start
keying in code, for simple applications this mayolke for most real life applications that may
include hundreds of classes and codes spanningdhds of line such an approach to

programming is as good as a Mission Impossible.

In this chapter we will introduce the basic stdps &re to be employed when developing a Java
program. Programming basically involves problenvisgj — that is we write programs to

efficiently and effectively meet the needs of tisens.

Problem solving
The purpose of writing a program is to solve a b Problem solving, in general, consists of

multiple steps:

Understanding the problem.
. Breaking the problem into manageable pieces.

a.
b

c. Designing a solution.
d. Considering alternatives to the solution and refyrthe solution.
e. Implementing the solution.

f.

Testing the solution and fixing any problems thase

The first step, understanding the problem, may dmbvious, but a lack of attention to this
step has been the cause of many misguided effovis. attempt to solve a problem we don’t
completely understand, we often end up solvingatteng problem or at least going off on
improper tangents. We must understand the neeitie @leople who will use the solution.

These needs often include subtle nuances thaafigitt our overall approach to the solution.

Introduction to Scientific Programming Using Java Page 33

After we thoroughly understand the problem, we thezak the problem into manageable pieces
and design a solution. These steps go hand in Wasdlution to any problem can rarely be
expressed as one big activity. Instead, it is es&f small cooperating tasks that interact to
perform a larger task. When developing softwareda@t write one big program. We design
separate pieces that are responsible for certais pbthe solution, subsequently integrating

them with the other parts.

Ouir first inclination toward a solution may notthe best one. We must always consider
alternatives and refine the solution as neces3duy earlier we consider alternatives, the easier it
is to modify our approach.

Implementing the solution is the act of taking tlesign and putting it in a usable form. When
developing a software solution to a problem, thplementation stage is the process of actually
writing the program. Too often programming is thbugf as writing code. But in most cases,
the final implementation of the solution is ondloéd last and easiest steps. The act of designing
the program should be more interesting and creé#tiae the process of implementing the design

in a particular programming language.

Finally, we test our solution to find any erroratlexist so that we can fix them and improve the
quality of the software. Testing efforts attempvésify that the program correctly represents the

design, which in turn provides a solution to thelpem.

Throughout this text we explore programming tecbhagjthat allow us to elegantly design and
implement solutions to problems. Although we witlem delve into these specific techniques in
detail, we should not forget that they are justddo help us solve problems.

Let us consider a simple problem and use it toarghese concepts in some detail. Let us
design and write a program to calculate the suangfthree integer numbers and calculate their

average.

The task before us is quite simple enough to utaleds To know what we are to do we can
begin by asking ourselves the ‘what’ question. Wdratwe (or in effect the program) expected
to do? What are the major processes involved icuéting the sum and average of any three

numbers? These could be summarized as follows:

Introduction to Scientific Programming Using Java Page 34

a. First we must be able to accept any three numbens the user.
b. Calculate the average.

c. Display average.

Next, we look at each of these steps and see fraak them and refine them as necessary; from
there onwards we plan how we will implement ouusoh. This is sometimes described as
asking the how question. How can we achieve thestag have identified and if necessary

refine the step.

Considering step ‘a’ we do not need to break it mlowet us implement this in our program

using dialog boxes.

Then step ‘b’ - calculate the average — how do aleutate average of three integer numbers?

This can be broken down into two steps that is:
i. Add up the three numbers to calculate their sum.
sum = firstNumber + secondNumber + thirdNumber

ii. Divide the sum by three to calculate the average.

SUTm
average = ——
3
The resulting value — average — may be an integleievor a floating point value. This being the

case we would declare average as double.

Finally, we consider the step c, that is, displgyime result. We will display the numbers added

and then the average using dialog boxes also.
The entire processing stedgorithm) are rewritten as:

First we must be able to accept any three numbens the user.
b. Calculate the average.

I. Add up the three numbers to calculate their sum.

il. Divide the sum by three to calculate the average.

c. Display average.

Introduction to Scientific Programming Using Java Page 35

Now we proceed to write the Java program, cormegtesrors and test with sample data. The

source code for the program is presented below:

/*

* AverageThreelntegers
* Calculates the sumand average of any three entegmbers

*/

import javax.swing.JOptionPane;

public class AverageThreelntegers

{

public static void main(String args|])

{

int firstNumber; // first integer number

int secondNumber; // second integer numbe
int thirdNumber; // third integer number

int sum; /[sum of the three ers

double average; // average of the threebers

String input; /[input values
String result; // output generatinggt

/I Accept inteher numbers from he user
input = JOptionPane.showInputDialog(ntlnter first number: ");
firstNumber = Integer.parselnt(input)/ wrap input to integer

input = JOptionPane.showInputDialog(ntlHnter second number: ");
secondNumber = Integer.parselnt(input/);wrap input to integer

input = JOptionPane.showInputDialog(ntlnter third number: ");
thirdNumber = Integer.parselnt(input)Y/ wrap input to integer

/I Calculate sum
sum = firstNumber + secondNumber + third Nvem

/I Calculate average
average = sum/3.0;

// Build output string and display output
result = "Average of " + firstNumber + "#+"secondNumber + "and " +
thirdNumber + " is = " + average;

JOptionPane.showMessageDialog(null, re$iiterage of 3 Integers”,
JOptionPane.INFORMATION_MESSAGE);

Introduction to Scientific Programming Using Java

Page 36

} // end method main

} /l end class AverageThreelntegers

Listing 4.1 AverageThreelntegers.java

Input) S 5
"@ Enter first number: E Enter second number:
3 | | |
OK Cancel OH Cancel
=4
m Average of 3 Integers m
Enter third number:
|5| | ® Average of 3, 4and 5is=4.0
0K cancel A
]
Figure 4.1
a'| Enter first number: , || Enter second number:
la = s

Enter third number:
1]

Figure 4.2

Introduction to Scientific Programming Using Java Page 37

The program listing 4.1 needs no elaborate explamedll the material presented has been
explained earlier. Figures 4.1 and 4.2 shows thgainput and output results obtained when

the program is executed.

Introduction to Scientific Programming Using Java Page 38

General Learning Objectives for Week5: Understand hsatiable Classes

Specific Objectives:

Define Insatiable Classes.

Understand the concepts of Class Members
Differentiate between Instance and Local Variables
Understand the concepts of declaring methods
Describe parameter passing in method definitions
Differentiate between public and private data

-0 o0 o

Introduction to Scientific Programming Using Java Page 39

Classes, Objects, Methods and Instance Variables

Let's begin with a simple analogy to help you ustierd classes and their contents. Suppose you
want to drive a car and make it go faster by presdown on its accelerator pedal. What must
happen before you can do this? Well, before youdctese a car, someone has to design the car.
A car typically begins as engineering drawings,ilsinto the blueprints used to design a house.
These engineering drawings include the designricaczelerator pedal to make the car go faster.
The pedal "hides" the complex mechanisms that Hgtoeke the car go faster, just as the brake
pedal "hides" the mechanisms that slow the cartlaadteering wheel "hides" the mechanisms
that turn the car. This enables people with ldtleno knowledge of how engines work to drive a

car easily.

Unfortunately, you cannot drive the engineeringadngs of a car. Before you can drive a car,
the car must be built from the engineering drawithgs describe it. A completed car will have
an actual accelerator pedal to make the car gerfdsit even that's not enough the car will not

accelerate on its own, so the driver must presacthelerator pedal.

Now let's use our car example to introduce thegtegramming concepts of this section.
Performing a task in a program requires a methbd.method describes the mechanisms that
actually perform its tasks. The method hides frtsruser the complex tasks that it performs, just
as the accelerator pedal of a car hides from tiverdihe complex mechanisms of making the car
go faster. In Java, we begin by creating a prograincalled a class to house a method, just as a
car's engineering drawings house the design oteslerator pedal. In a class, you provide one
or more methods that are designed to perform #esd tasks. For example, a class that
represents a bank account might contain one methdéeposit money to an account, another to

withdraw money from an account and a third to ingwhat the current balance is.

Just as you cannot drive an engineering drawiregazr, you cannot "drive" a class. Just as
someone has to build a car from its engineering/iaigs before you can actually drive a car, you

must build an object of a class before you caragebgram to perform the tasks the class

Introduction to Scientific Programming Using Java Page 40

describes how to do. That is one reason Java iwikas an object-oriented programming

language.

When you drive a car, pressing its gas pedal samdsssage to the car to perform a taskthat is,
make the car go faster. Similarly, you senelssage$o an object each message is known as a

method calland tells a method of the object to perform iskta

Thus far, we have used the car analogy to introdlasses, objects and methods. In addition to
the capabilities a car provides, it also has matmipates, such as its color, the number of doors,
the amount of gas in its tank, its current speetlientotal miles driven (i.e., its odometer
reading). Like the car's capabilities, these aitab are represented as part of a car's desits in |
engineering diagrams. As you drive a car, thesiates are always associated with the car.
Every car maintains its own attributes. For examgéeh car knows how much gas is in its own
gas tank, but not how much is in the tanks of otaes. Similarly, an object has attributes that
are carried with the object as it is used in a @py These attributes are specified as part of the
object's class. For example, a bank account obgeca balance attribute that represents the
amount of money in the account. Each bank accdajetbknows the balance in the account it
represents, but not the balances of the other ateauthe bank. Attributes are specified by the

class'snstance variables

The remainder of this chapter presents exampléslémonstrate the concepts we introduced in

the context of the car analogy.

Insatiable Classes

Insatiable classes can be permits users to crestences — objects of the class. Each object of
the class will have its own set of variablesisiance variablethat represent the current state of
the object and methods that defines the task thjatbcan perform. Technically each method

should perform only a single task, and it is petaitto call other methods to assist it.

Instance variables are declared outside any metiside the class and usually immediately after
the class definition header. See line 8 of figue the access modifier is used to ensure that

each object maintains it own set of variables &g hot visible to any other object of the class

Introduction to Scientific Programming Using Java Page 41

or any other class. Variables declared inside datkare not visible to any other member of that
class or outside that class. Such variables amgepcal variablesinstance variables are

visible to all members of the class, but not to hera of another class. To enable other classes
to access instance variables in order to reflettaange in the state of the objects we use public
service methods — set and get — methods to fdeilités through a well defined mechanism. The

set methods enables changes while get methodstheesirrent state of the object.

Declaring a Class with a Method and Instantiatingject of a Class

We begin with an example that consists of classer (Fig. 5.1 andCircleTest (Fig. 5.9.
Classcircle (declared in filecirclejava) will be used to define the properties of a Circle
object and tasks which each object of the cladsibhble to perform — in this case calculate the
area of a Circle instance. ClasgleTest (declared in fileCircleTest.java)is an

application class in which theain method will use classircle . Each class declaration that
begins with keyworgublic must be stored in a file that has the same nartteeadass and

ends with thejava file-name extension. Thus, classasle andCircleTest must be

declared in separate files, because each clagglsrddoublic

1

2

3

4

5

6 public class Circle {

7

8 private double radius;
9

10 public Circle() {

11 radius = 0;

12}

13

14

15

16 public Circle(double r){
17 setRadius(r);

18 }

19

20

21

22 public void setRadius(double r){
23 radius =r;

24

25 1}

Introduction to Scientific Programming Using Java Page 42

26

27

28 public double getRadius(){

29 return radius;

30

31 }

32

33

34 public double calcArea(){

35 return Math.PI * Math.pow(radius, 2);

36

37}
38}

ClassCircle

Thecircle class declaratior=(g. 3.J) contains a two constructor methods, a no argument
constructorcircle)m ethod (lines 10-12) that initializes the radiusadircle object to its
default value of zero (0. The second constructdhotkis a programmer declared constructor
Circle(double r) method (lines 16-18) that that initializes a Grobject using the values

specified by the user.

The methodsetRadius() andsetRadius() are public service methods that enables the
iInstance variableadius (declared in line 8) to be visible to other classkhe class declaration

also contains calcAr@athat calculates the area of the circle.

So far, each class we declared had one method naareda special method that is always
called automatically by the Java Virtual Machin€N) when you execute an application). Most
methods do not get called automatically. As you sabn see, you must call methadkcArea

to tell it to perform its task.

The method declaration begins with keywpuadiic to indicate that the method is "available to
the public" that is, it can be called from outside class declaration's body by methods of other
classes. Keywordouble indicates that this method will perform a task anliireturn (i.e., give
back) a value of type double to d@alling method when it completes its task. Method

setRadius on the other hand does not return any valuestoalling method thus the keyword

void.

Introduction to Scientific Programming Using Java Page 43

The name of the methochicArea , follows the return type. By convention, methodnes begin
with a lowercase first letter and all subsequentdsan the name begin with a capital letter. The
parentheses after the method name indicate ttgisthi method. An empty set of parentheses, as
shown in line 34, indicates that this method dasts@quire additional information to perform its
task. Line 7 is commonly referred to as thethod header Every method's body is delimited by

left and right braceq (and}), as in lines 34 and 37.

The body of a method contains statement(s) thédberthe method's task. In this case, the
method contains one statement (line 35) that catlesiithe area of a cicle. After this statement
executes, the method has completed its task.

Next, we'd like to use clagsrcle in an application. As earlier stated methath begins the
execution of every application. A class that camanethodnain is a Java application. Such a
class is special because the JVM cannuse to begin execution. Clagdrcle is not an
application because it does not contaiin . Therefore, if you try to executrcle by typing

java Circle in the command window, you will get the error naags

Exception in thread "main" java.lang.NoSuchM ethodError: main
Class Circl eTest

ThecircleTest class declaratiori-(g. 5.2 contains thenain method that will control our
application's execution. Any class that contaiam declared as shown on line 7 can be used to
execute an application. This class declarationrizegi line 4 and ends at line 16. The class

contains only anain method, which is typical of many classes that vegi application's

execution.
Circlel (=X ' Circle2 =- _ &J
(D Radius = 0.0 Ir"'i“HI Radius = 5.0
Area=0.0 =~ Area=78.53981633974493
oK | ox | |
Figure 5.1a Figure 5.1b

Introduction to Scientific Programming Using Java Page 44

rfnput ﬁ . Circle2 ﬁ :
9| Enter Radius: ® Radius = 5.0
== |T| | Area = 78.53931633974433
OK Cancel oK
!
Figure 5.1c Figure5.1d
1/
2 *CircleTest.java
3 *
4 *
5
6 package MyTrig;
7
8 import javax.swing.JOptionPane;
9
10 public class CircleTest
11 ¢
12
13 public static void main(String[] args)
14 |
15 // Declare local variables

16 String input;
17 String output;

18

19 double newRadius = 0;

20

21 /I Create Circle object using the no-argument const ructor
22 Circle circlel = new Circle();

23

24 Il create another Circle instance class using the P rogrammer
25 /I declared constructor

26 Circle circle2 = new Circle(5); /I circle has a radius of 5
27

28 /Il display state of Circle objects

29 output = "Radius =" + circlel.getRadius() +

30 "\nArea =" + circlel.calcArea();

31 JOptionPane.showMessageDialog(null , output, "Circlel"
32 JOptionPane.INFORMATION_MESSAGE);

33

34 output = "Radius =" + circle2.getRadius() +

35 “\nArea ="+ circle2.calcArea();

36 JOptionPane.showMessageDialog(null , output, "Circle2"
37 JOptionPane.INFORMATION_MESSAGE);

38

39 /I Allow user to alter the state of circlel object

40 input = JOptionPane.showInputDialog(null , "Enter Radius: ");
41 newRadius = Double.parseDouble(input);

42

43 circlel.setRadius(newRadius); Il reset radius variable

44

45 /I display current radius and area of circlel

Introduction to Scientific Programming Using Java Page 45

46 output = "Radius =" + circle2.getRadius() +
a7 "\n Area =" + circle2.calcArea();
48 JOptionPane.showMessageDialog(null , output "Circle2"

49 JOptionPane.INFORMATION_MESSAGE):
50

51}

52

53}

Figure 5.2

Lines 13-51 declare methathin . Recall that thenain header must appear as shown in line 13;
otherwise, the application will not execute. A kart of enabling the JVM to locate and call
methodmain to begin the application's execution is theic keyword (line 13), which
indicates thainain is astatic method. Astatic method is special because it can be called

without first creating an object of the class inieththe method is declared.

In this application, we'd like to call classcle 'scalcArea method to calculate the area of any
Circle object. Typically, you cannot call a methbdt belongs to another class until you create
an object of that class, as shown in lines 30 ahdMe begin by declaring two variables

circlel andcircle2 . Note that the variable's typedscle the class we declared iing. 5.1.
Each new class you create becomes a new type @antlatvcan be used to declare variables and
create objects. Programmers can declare new gfass &s needed; this is one reason why Java

is known as aextensible language

Variablescirclel and circle2 are initialized with the result of tldass instancesreation
expressionnew Circle()and circle2(5) respectively . Keywordnew creates a new object
of the class specified to the right of the keyw@rel., Circle). The parentheses to the right of
thecircle are required. Those parentheses in combinatidnawfass name represent a call to
a constructor, which is similar to a method, buissd only at the time an object is created to
initialize the object's data.

Just as we can use objsgstem.out to call methodsgrint , printf andprintin ~, we can now
usecCircle objects to call methodsalcArea, setRadius and getRadius . Line 30 calls

the methodtalcArea (declared at lines 34-37 Bfg. 5.1) using variableirclel followed by a

dot separator(.), the method nameaicArea and an empty set of parentheses. This call causes

thecalcArea method to perform its task. In line 28irélel " indicates thainain should use

Introduction to Scientific Programming Using Java Page 46

thecircle object that was created on line 22. Line 3%iof 5.1lindicates that method

calcArea has an empty parameter list thakciscArea does not require additional information
to perform its task. For this reason, the methdld(loae 29 of Fig. 5.9 specifies an empty set of
parentheses after the method name to indicatenthatguments are being passed to method
calcArea . When methodalcArea completes its task, methachin continues executing at line
51. This is the end of methathin , so the program terminates. Segures 5.1a-5.1for sample

run output.

Methods and Constructors a Deeper Look

As we earlier mentioned, methods are used for Bpregithe tasks that objects of the class can
perform. Constructors are special methods thatised for initializing objects when they are
created. In order to see the differences betwesndhstructors and regular (non-constructor)

methods, we have presented below the structurerathod:

accessModifer returnType methodName(parameteyList

{
statements
return statement
}
Where:

accessModifer(access modifier) specifies the visibility of tmethod to other classes — the
access modifier may be specified public or privBigblic specifies that the method is visible to
other classes “that is visible to the public” whilkevate is the exact opposite. Private methods

cannot be accessed outside the class from whishiléfined and thus it cannot be inherited.

returnType specifies the “nature” of the value the methodegiback to its calling method (if
any) when it completes its task. The return typeca primitive type value or reference type
value as the case may be.

methodName(method name) is an identifier used to make refedo the method.

parameterList is an optional list of identifiers representihg tvalues (arguments) to be passed

into the method. The parameters —often referres timrmal parameters — are used by methods

Introduction to Scientific Programming Using Java Page 47

in carrying out of their tasks. They must haveetfollowed by an identifier. Several

parameters must be separated using commas.
statements— instructions that enable the method to carryitsuasks.

return statementis used to return (send) data back to the cathethod. When the return
statement is implemented without a value followitpghen the returnType must be specified as

void.

Both regular methods and constructors are permittéhve parameters (formal parameters).
Note: values passed into methods and construaterseferred to asctual parametemhich are

copies of the actual data except when the datafaype reference.
Differences between Methods and Constructors

a. Constructors must have the same name as the dda$is in capitalization and in
sequence - in which it is declared.

b. Constructors do not have a return type in its netthefinition header.
c. The return statement is not required.

d. Constructors are only executed when an objeceated, they may not be invoked if
the state of the object alters. In such a situatanthe state of the object changes, public

service methods will be required to assist in g the change.

e. Constructors may not be declaredsagicas they are involved in the creation and

initialization of the objects themselves.

Introduction to Scientific Programming Using Java Page 48

General Learning Objectives for Week7: Know the Us of Conditional Statements

Specific Objectives:

Understand algorithm
Understand pseudocodes
Know and identify relational and logical operators
Know how to write simple relational and logical eggsions
Know the structure of the if-statement
Apply the if-statement
. Know and apply the switch statement
Apply nested if-statements

S3 T RTTS@

Introduction to Scientific Programming Using Java Page 49

Algorithms

Any computing problem can be solved by executisgrées of actions in a specific order. A

procedure for solving a problem in terms of

1. theactionsto execute and
2. theorderin which these actions execute
3. is called aralgorithm. The following example demonstrates that corresplgcifying the

order in which the actions execute is important.

Consider the "rise-and-shine algorithm" followeddme executive for getting out of bed and
going to work: (1) Get out of bed; (2) take off gajas; (3) take a shower; (4) get dressed; (5) eat
breakfast; (6) carpool to work. This routine géies €xecutive to work well prepared to make
critical decisions. Suppose that the same stepgeafermed in a slightly different order: (1) Get
out of bed; (2) take off pajamas; (3) get dres¢éxtake a shower; (5) eat breakfast; (6) carpool
to work. In this case, our executive shows up forknsoaking wet.

Pseudocode

Pseudocodas an informal language that helps programmergldgvalgorithms without having
to worry about the strict details of Java langusgigax. The pseudocode we present is
particularly useful for developing algorithms thatl be converted to structured portions of Java
programs. Pseudocode is similar to everyday Englslonvenient and user friendly, but it is

not an actual computer programming language.

Pseudocode does not execute on computers. Rathelps the programmer "think out" a
program before attempting to write it in a programgrianguage, such as Java. This chapter

provides several examples of how to use pseuddcodevelop Java programs.

The style of pseudocode we present consists pafallgaracters, so programmers can type
pseudocode conveniently, using any text-editor aog A carefully prepared pseudocode
program can easily be converted to a correspontiing program. In many cases, this simply

requires replacing pseudocode statements withelgwaalents.

Introduction to Scientific Programming Using Java Page 50

Pseudocode normally describes only statementssemiag the actions that occur after a
programmer converts a program from pseudocodevim aad the program is run on a computer.
Such actions might include input, output or a clalton. We typically do not include variable
declarations in our pseudocode. However, some anogiers choose to list variables and

mention their purposes at the beginning of theaupi®code

Specifying the order in which statements (actien®cute in a program is callpdogram

control. Normally, statements in a program are executedafier the other in the order in which
they are written. This process is calkuential executionVarious Java statements, which we
will soon discuss, enable the programmer to spebdythe next statement to execute is not
necessarily the next one in sequence. This isccab@sfer of control.

During the 1960s, it became clear that the indisicrate use of transfers of control was the root
of much difficulty experienced by software develagrngroups. The blame was pointed at the
goto statenent (used in most programming languages of the timkijch allows the
programmer to specify a transfer of control to oha very wide range of possible destinations
in a program. The notion of so-callstfuctured programming became almost synonymous
with "goto elimination.” [Note: Java does not havgoa statement; however, the wagoto is

reserved by Java and should not be used as aiifieteintprograms.]

The research of Bohm and Jacopiki@MSITStore:C:\java\Java%20-

%20How%20T0%20Program,%206th%20Edition%20(2004).chm::/0131483986/ch04levlsec4.html -

cho4fn1 had demonstrated that programs could be writtémont anygoto statements. The
challenge of the era for programmers was to ddir tstyles to goto -less programming.” Not
until the 1970s did programmers start taking stmex programming seriously. The results were
impressive. Software development groups reportedehdevelopment times, more frequent on-
time delivery of systems and more frequent withurtldpet completion of software projects. The
key to these successes was that structured progvaresclearer, easier to debug and modify,

and more likely to be bug free in the first place.

Bohm and Jacopini's work demonstrated that all qanog could be written in terms of only three

control structuresthgequence structuretheselection structureand therepetition structure.

Introduction to Scientific Programming Using Java Page 51

The term "control structures” comes from the fiefdcomputer science. When we introduce
Java's implementations of control structures, werefier to them in the terminology of the Java

Language Specification as "control statements."

Sequence Structure in Java

The sequence structure is built into Java. Unlesstéd otherwise, the computer executes Java
statements one after the other in the order in kvthey are written, that is, in sequence. In Fig.

7.1 illustrates a typical sequence structure irclvitwo calculations are performed in order. Java
lets us have as many actions as we want in a segsmnicture. As we will soon see, anywhere a

single action may be placed, we may place sevetas in sequence.

Fig. 7.1 Sequence of instruction executed one #fteother.

Selection Statements in Java

Java has three types of selection statementsif Teatement either performs (selects) an action
if a condition is true or skips the action, if tt@ndition is false. Th& ..else statement

performs an action if a condition is true and permi® a different action if the condition is false.
Theswitch statement performs one of many different actidepending on the value of an

expression.

Theif statement is aingle-selection statemenbecause it selects or ignores a single action (or,
as we will soon see, a single group of actionsgifTh..else statement is calleddouble-

selection statemenbecause it selects between two different actiongroups of actions). The

Introduction to Scientific Programming Using Java Page 52

switch statement is calledraultiple-selection statementbecause it selects among many

different actions (or groups of actions).

i f Single-Selection Statement

Programs use selection statements to choose antengpéive courses of action. For example,
suppose that the passing grade on an exam is 8Josdudocode statement

If student's grade is greater than or equal to 60
Print "Passed"
determines whether the condition "student's gradgedater than or equal to 60" is true or false.
If the condition is true, "Passed" is printed, #imel next pseudocode statement in order is
"performed.” (Remember that pseudocode is notlgpregramming language.) If the condition
is false, the Print statement is ignored, and tha pseudocode statement in order is performed.
The indentation of the second line of this selecttatement is optional, but recommended,

because it emphasizes the inherent structurewsftated programs.

The preceding pseudocode If statement may be wiittdava as

if (studentGrade >= 60)
System.out.printin("Passed");

Note that the Java code corresponds closely tpsbadocode. This is one of the properties of

pseudocode that makes it such a useful programapeuent tool.

if ...else Double-Selection Statement

Theif single-selection statement performs an indicatéidma only when the condition i3 ue;
otherwise, the action is skipped. Tihe..else double-selection statement allows the
programmer to specify an action to perform whenciradition is true and a different action

when the condition is false. For example, the pseade statement

Introduction to Scientific Programming Using Java Page 53

If student's grade is greater than or equal to 60
Print "Passed"
Else
Print "Failed"
prints "Passed" if the student's grade is grehtar br equal to 60, but prints "Failed" if it iS$e
than 60. In either case, after printing occurs bt pseudocode statement in sequence is

"performed.”

The preceding If...Else pseudocode statement caritien in Java as

if (grade >= 60)
System.out.printin("Passed");
else
System.out.printin("Failed");

Note that the body of these is also indented. Whatever indentation convenyimnchoose
should be applied consistently throughout your paots. It is difficult to read programs that do

not obey uniform spacing conventions.

Conditional Operator (?:)

Java provides theonditional operatof?:) that can be used in place ofiain..else statement.
This is Java's onliernary operator this means that it takes three operands. Togetier,
operands and the symbol form aconditional expression.The first operand (to the left of the
?) is abool ean expression (i.e., a condition that evaluatestieo&an valuarue orf al se), the
second operand (between thand:) is the value of the conditional expression if thelean
expression igRue and the third operand (to the right of thas the value of the conditional

expression if théoolean expression evaluatestfase . For example, the statement

System.out.printin(studentGrade >= 60 ? "Passed" : ‘"Failed");

prints the value ofrintin ‘s conditional-expression argument. The conditi@xglression in

this statement evaluates to the stripgssed” if the boolean expressiontudentGrade >= 60

Introduction to Scientific Programming Using Java Page 54

is true and evaluates to the strifgiled" if theboolean expression is false. Thus, this
statement with the conditional operator perfornseasally the same function as the. else
statement shown earlier in this section. The prexeel of the conditional operator is low, so the
entire conditional expression is normally placeganentheses. We will see that conditional

expressions can be used in some situations \ifherelse statements cannot.

Nested i f ...el se Statements

A program can test multiple cases by pladging.else statements inside othier...else
statements to creaiested i f...el se statenments. For example, the following pseudocode
represents a nestéd...else that printsa for exam grades greater than or equal ta890r

grades in the range 80 to &Xor grades in the range 70 to T&or grades in the range 60 to 69
andFr for all other grades:

If student's grade is greater than or equal to 90
Print "A"
else if student's grade is greater than or equédto
Print "B"
else
If student's grade is greater than or equal to 70
Print "C"
else
If student's grade is greater than or equal to 60
Print "D"
else
Print "F"

This pseudocode may be written in Java as

if (studentGrade >= 90)
System.out.printin("A);
else
if (studentGrade >= 80)
System.out.printin("B");
else
if (studentGrade >= 70)
System.out.printin("C");
else
if (studentGrade >= 60)
System.out.printin(D");
else
System.out.printin("FOY;

Introduction to Scientific Programming Using Java Page 55

If studentGrade is greater than or equal to 90, the first fourdibans will be true, but only the
statement in the& -part of the firsif ...else statement will execute. After that statement
executes, thelse -part of the "outermosif ...else statement is skipped. Most Java

programmers prefer to write the preceding.else statement as

if (studentGrade >= 90)
System.out.printin(AT,
else if (studentGrade >= 80)
System.out.printin("B"),
else if (studentGrade >= 70)
System.out.printin("C"o);
else if (studentGrade >= 60)
System.out.printin(D"),
else
System.out.printin("FO);

The two forms are identical except for the spaend indentation, which the compiler ignores.
The latter form is popular because it avoids deepmtation of the code to the right. Such
indentation often leaves little room on a line ofle, forcing lines to be split and decreasing

program readability.

Dangling-el se Problem

The Java compiler always associatesissn with the immediately preceding unless told to
do otherwise by the placement of bradear{d}). This behavior can lead to what is referred to

as thedangl i ng- el se probl em For example,

if (x> 5)
if (y> 5)
System.out.printin("x and y are > 5");
else
System.out.printin("X is <= 5");

appears to indicate thatxfis greater thas, the nested statement determines whetlgas
also greater thas. If so, the stringx and y are > 5" is output. Otherwise, it appears that if

is not greater thas, theelse part of thef ...else outputs the stringk is <= 5"

Introduction to Scientific Programming Using Java Page 56

Beware! This nesteidl ...else statement does not execute as it appears. Theleomgtually

interprets the statement as

if (x> 5)
if (y> 5)

System.out.printin("x and y are > 5");
else

System.out.printin("X is <= 5");

in which the body of the first is a nested ..else . The outeif statement tests whethers

greater tham. If so, execution continues by testing whethé also greater thas If the second

condition is true, the proper stritxgaind y are > 5" is displayed. However, if the second
condition is false, the string is <= 5" is displayed, even though we know thas greater
thans.

To force the nesteid ..else statement to execute as it was originally inteneeimust write it

as follows:
if (x> 5)
{
if (y> 5)
System.out.printin("x and y are > 5");
}
else
System.out.printin("X is <= 5");

The braces{)) indicate to the compiler that the secandstatement is in the body of the first

and that thelse is associated with the first .

Blocks

Theif statement normally expects only one statemensibddy. To include several statements
in the body of anf (or the body of amise for anif ..else statement), enclose the statements
in braces{ and}). A set of statements contained within a pairraices is called block. A

block can be placed anywhere in a program thatglesstatement can be placed.

The following example includes a block in #lge -part of anf ...else statement:

Introduction to Scientific Programming Using Java Page 57

if (grade >= 60)

System.out.printin("Passed");
else
{
System.out.printin("Failed");
System.out.printin("You must take this course again.”);

}

In this case, ifrade is less than 60, the program executes both statsnrethe body of the

else and prints

Failed.

You must take this course again.

Note the braces surrounding the two statementseiaide clause. These braces are important.
Without the braces, the statement

System.out.printin("You must take this course again.”);

would be outside the body of thge -part of theif ...else statement and would execute

regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a bloc&ftsout of the program) are caught by the
compiler. Alogic error (e.g., when both braces in a block are left ouhefprogram) has its
effect at execution time. fatal logic error causes a program to fail and terminate prematurely
A nonfatal logic error allows a program to continue executing, but catlserogram to

produce incorrect results.

Introduction to Scientific Programming Using Java Page 58

General Learning Objectives for Week8: Know the Us of Selection Statements

Specific Objectives:

Apply the while statement

Apply the do statement

Write simple programs to implement the while andstidtements

Develop algorithms for solving simple repetitiv@plems — counter controlled and
sentinel-controlled algorithms.

e. Applies a JTextArea and a JScrollPane class tdajigpe numbers.

oo op

Introduction to Scientific Programming Using Java Page 59

Thewhile Repetition Statement

A repetition statement(also called &oping statemendr aloop) allows the programmer to
specify that a program should repeat an actionendoime condition remains true. The

pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a simgpioip. The condition "there are more items
on my shopping list" may be true or false. If itige, then the action "Purchase next item and
cross it off my list" is performed. This action e performed repeatedly while the condition
remains true. The statement(s) contained in thdéVapetition statement constitute the body of
the While repetition statement, which may be alsistatement or a block. Eventually, the
condition will become false (when the last itemtlb@ shopping list has been purchased and
crossed off the list). At this point, the repetitierminates, and the first statement after the

repetition statement executes.

As an example of Javaiile repetition statement, consider a program segnmesigded to
find the first power of 3 larger than 100. Suppthss theint variableproduct is initialized to

3. When the followingvhile statement finishes executingeduct contains the result:

int product = 3;
while (product <= 100)
product = 3 * product;

When thiswhile statement begins execution, the value of varigdbleict is 3. Each iteration
of thewhile statement multipliesroduct by 3, soroduct takes on the values 9, 27, 81 and
243 successively. When varialpleduct becomes 243, thehile statement conditigmoduct

<= 100 becomes false. This terminates the repetitionhadihal value oproduct is 243. At this

point, program execution continues with the neateshent after thenile statement.

Introduction to Scientific Programming Using Java Page 60

Formulating Algorithms: Counter-Controlled Repetition

To illustrate how algorithms are developed, we ai#ate a clasgenNos (declared in
TenNos.java) to generate and sum the first temgartaumbers from 1 to 10 by default. Below is
the algorithm (pseudocode for generating and catitg the sum of ten numbers from 1 to 10.

Pseudocode: Generate an calculate the sum ofrghécih numbers from 1 to 10

First Pseudocode:

Stepl: Initialize variables

Step2: Generate numbers from 1 to 10
Step3: Calculate sum of the numbers
Step4: Display numbers and sum
Step5: Stop.

The algorithm may be refined further, for exampkpad may be broken down such that the
variables to be initialize will be specified thgsepl becomes:

Stepl: counter =1, sum =0, n =10

counter is set to 1 because we will start the gogritom 1, sum will start from zero so the
summation of the numbers will be accurate. Theabdein is set to 10 because the Ist number in

the sequence is ten.

Step2: Generate numbers from 1 to 10
Step3: Calculate sum of the numbers

Steps 2 and 3 will be simplified and expanded fntiAs each number is generate the sum will
be calculated and updated. The number will contisiyobe generated as long as the number
generated does not exceed ten. When this happendiverminate the loop. Hence steps 2 and
3 becomes:

Step2: while counter is less than or equal to n
Step3: add counter to sum

Step4: increment counter by 1

Step5 return to Step 2

The original step 4 and 5 from the first pseudodoelomes Step 6 and 7 repectively. The final
refinement is presented below:

Introduction to Scientific Programming Using Java Page 61

Final Refined Pseudocode:

Stepl: counter=1,sum=0,n =10

Step2: while counter is less than or equal to n
Step3: add counter to sum

Step4: increment counter by 1

Step5 return to Step 2

Step6: Display numbers and sum

Step7:Stop

Based on this algorithm the Java program in dedlaseTenNos.java was developed. The code

listing is presented below:

1

2 *TenNos.Java

3 * Generates the First Ten Numbers and Calculate th eir Sum
4 *

5 7

6

7

8 import javax.swing.JOptionPane;

9 import javax.swing.JTextArea;

10 import javax.swing.JScrollPane;

11

12 public class TenNos

13{

14

15 public static void main(String[] args)

16 {

17 int sum =0;

18 int counter =1,

19 int n=10;

20 String nos = "

21

22 Il Create JTextArea for displaying numbers

23 JTextArea output = new JTextArea(5, 20);

24

25 /I Generate numbersn

26 while (counter <=n){

27 output.append(counter + “\n"); /l add numbers to the JTextarea
28 sum += counter; /I calculate sum
29 counter++; /I increment counter by 1
30 } /I end while i <=n

31

32 nos = “\nSum ="+ sum;

33 output.append(nos);

34

35 /I Append a JScrollpane to the JTextArea object

36 JScrollPane outputArea = new JScrollPane(output);
37

38 /I Display numbers and their sum

39 JOptionPane.showMessageDialog(null , outputArea,

Introduction to Scientific Programming Using Java Page 62

40 "Generate and Sums Numbers 1 - 10" ,

41 JOptionPane.INFORMATION_MESSAGE) ;
42

43 '} /I end method main

44

45} /I end of class TenNos

Figure 8.1 TenNos.java

Lines 8 — 10 contains the import declaration ofdlasses we need to build our class
TenNos.java. The local variables representing tumter, the nth value and the sum are
initialized in lines 17 — 20. An object referendeclassITextArea(package javax.swing) was
created in line 23. The while loop was declaredftmes 26 — 30. The while statement will
continue to iterate as long as the variablerter is less than or equal to the variabléVith

each iteration of the while statement, the valueaninter is added to the text area object (output)
—line 2, sums the number in stores the resultenvtriable sum and increments the counter by
one and then control is returned to the while stat& for re-evaluation if the value of counter is
greater the ten, the loop terminates and controarssferred to the first executable statement

after the closing curly brace enclosing the bodthefwhile loop (at line 32)..

The sum of the numbers is then added to the stangblenos (line32) and appended to the
JTextArea objectutput (lines 33). The entire numbers generated and sair is displayed
using the static objeshowMessageDialog of the JOptionPane class (lines 39-41). See fgure

8.1a and 8.1b for a sample output run.

[Generate and Sums Numbers 1 - 10 @r Generate and Sums Mumbers 1 - 10 @
- I
=] T (T 5 ES
@ 7 ;i \!/) !g =
] Ho
|5 - [Sum = 55 |w
OK oK
b -
Figure 8.1a Figure 8.1b

Introduction to Scientific Programming Using Java Page 63

General Learning Objectives for Week9: Recursion

Specific Objectives:

a. Understand the concepts of recursion
b. Write simple recursive methods

Introduction to Scientific Programming Using Java Page 64

Recursive Concepts

The programs we have discussed thus far are gnstraictured as methods that call one
another in a disciplined, hierarchical manner. $@ne problems, however, it is useful to have a
method call itself. Such a method is known asarsive method A recursive method can be

called either directly or indirectly through anatmeethod.

Recursive problem-solving approaches have a nuofEements in common. When a recursive
method is called to solve a problem, the methodadigtis capable of solving only the simplest
case(s), obase case(s)f the method is called with a base case, théateteturns a result. If

the method is called with a more complex probldma,method typically divides the problem

into two conceptual piecesa piece that the metmadvk how to do and a piece that the method
does not know how to do. To make recursion feasthkelatter piece must resemble the original
problem, but be a slightly simpler or smaller vensof it. Because this new problem looks like
the original problem, so the method calls a fregbyoof itself to work on the smaller problem
this is referred to asracursive calland is also called thecursion step The recursion step
normally includes @turn statement, because its result will be combined thié portion of the
problem the method knew how to solve to form altekat will be passed back to the original

caller.

The recursion step executes while the originalteathe method is still active (i.e., while it has
not finished executing). The recursion step canlt@s many more recursive calls as the method
divides each new sub-problem into two conceptuatgs. For the recursion to eventually
terminate, each time the method calls itself wiginapler version of the original problem, the
sequence of smaller and smaller problems must cgevan a base case. At that point, the
method recognizes the base case and returns ateetud previous copy of the method. A

sequence of returns ensues until the original nuketiadl returns the final result to the caller.

A recursive method may call another method, whiey i turn make a call back to the
recursive method. Such a process is known asdarect recursive calbr indirect recursion.

For example, method calls method, which makes a call back to methadrhis is still

Introduction to Scientific Programming Using Java Page 65

considered recursion, because the second call ttvoche is made while the first call to method
Ais active that is, the first call to methadhas not yet finished executing (because it isingit

on method to return a result to i) and has not returned édhmdA's original caller.

Example Using Recursion: Factorials

Let us write a recursive program to perform a papuatathematical calculation. Consider the

factorial of a positive integer n, written n! (apebnounced "n factorial”), which is the product

nin—1n—2) .. 1

with 1! equal to 1 and 0! defined to be 1. For eglan5! is the product5 -4 -3 -2 - 1, which is
equal to 120.

The factorial of integefiumber (wherenumber > 0) can be calculatdteratively (non-
recursively) using &r statement as follows:
factorial = 1;

for (int counter = number; counter >= 1; counter--)
factorial *= counter;

A recursive declaration of the factorial methodiisved at by observing the following

relationship:

nl =n(n— 10
For example, 5! is clearly equal to 5 - 4!, ashisven by the following equations:

51=5.4.3.2.1
51=5.(4.3.2.1)
51=5.41

The evaluation of 5! would proceed as shown in Bia and Fig 9.1b shows how the
succession of recursive calls proceeds until B [tase case) is evaluated to be 1, which
terminates the recursion. Fig 9.1c shows the vaketesned from each recursive call to its caller

until the final value is calculated and returned.

Introduction to Scientific Programming Using Java Page 66

Final value 120

51=5*24=120 is returned

5* 4l
41=4*6=24 is returned

31=3*2=6 is returned

21=2*1=2 is returned

1is returned

EEEEES

Figure 9.1a Sequence of Figure9.1b values returned from Figure 9.1c
Recursive calls each recursive calls

Figure 9.2 uses recursion to calculate and print the factorials of the integers from 010. The recursive
method factorial (lines 8-14) first tests to determine whether a terminating condition (line 10) is
True . If number is less than or equal to 1 (the base case), factorial returns 1, no further recursion is
necessary and the method returns. If number is greater than 1, line 13 expresses the problem as the
product of number and a recursive call to factorial evaluating the factorial of number -1 , which is

a slightly simpler problem than the original calculation, factorial(number)

1~

2 * FactorialCalculator.java

3 *

4 ¥

5

6 public class FactorialCalculator {

7 Il recursive method factorial

8 public long factorial(long number) {

9 if (number<=1)

10 return 1;

11 else //recursive step

12 return number * factorial(number - 1);
13

14 } /I end method factorial

15

16 Il output factorials from values from O thruogh 10
17 public void displayFactorials() {

18 I calculate the factorials from 0 through 10

19 for (int counter=0; counter <= 10; counter++)
20 System.out.printf("%d! =%d \n", counter, factorial(counter));
21} /I end method displayFactorials

22} [/l end class FactorialCalculator

Introduction to Scientific Programming Using Java Page 67

Figure 9.2

1
2
3
4
5
6 package hello;
7

8

public class FactorialTest {

9

10 public static void main(String[] args) {

11 FactorialCalculator factorialCalculator = new
FactorialCalculator();

12 factorialCalculator.displayFactorials();

13 }

14

15}

Figure 9.3

MethoddisplayFactorials (lines 17-22) displays the factorials of 0-10. Tad to method
factorial occurs in line 21. Methowctorial receives a parameter of typpeg and returns a
result of typdong . Figure 9.2 tests otiictorial anddisplayFactorials methods by calling
displayFactorials (line 10). As can be seen from the output of Big, factorial values
become large quickly. We use typeg (which can represent relatively large integersihso
program can calculate factorials greater than Wgfortunately, theactorial method

produces large values so quickly that factorialigalsoon exceed the maximum value that can

be stored even inlang variable.

ol=1
=1
21=2
3'=6

41 =24
5!1=120
6!=720

7! =5040
8! = 40320
9! = 362880
10! = 3628800

Figure 9.4 sample output

Introduction to Scientific Programming Using Java Page 68

General Learning Objectives for Week10: Charactersand Strings

Specific Objectives:

Describe and manipulate character type data

Differentiate between string and string buffer sks
Differentiate between equivalence and equalitystang objects
Show how objects are passed to and returned frothade

oo op

Introduction to Scientific Programming Using Java Page 69

Fundamentals of Characters and Strings

Characters are the fundamental building blocksasdXlource programs. Every program is
composed of a sequence of characters that whepepidogether meaningfully are interpreted
by the computer as a series of instructions usedd¢omplish a task. A program may contain
character literals. A character literal is an integer value represeras a character in single
guotes. For example, represents the integer valuezpand\n' represents the integer value
of newline. The value of a character literal is ithieger value of the character in tiricode

character set

What are Strings?

A string is a sequence of characters treated amBesunit. A string may include letters, digits
and variouspecial characterssuch as, -, *,/ ands. A string is an object of classring
String literals (stored in memory a&ring objects) are written as a sequence of characters i

double quotation marks, as in:

"John Q. Doe" (a name)

"9999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

A string may be assigned tsaing reference. The declaration

String color = "blue"

initializesstring reference color to refer to a String object thattains the stringplue”

Class String

Classstring is used to represent strings in Java. The nexraksubsections cover many of

classstring 's capabilities.

Introduction to Scientific Programming Using Java Page 70

Stri ng Constructors

Classstring provides constructors for initializirgyring objects in a variety of ways. Four of

the constructors are demonstrated inntha method of Fig. 10.1.

1 //Fig. 10.1 StringConstructors.java

2 |/ String class constructors.

3

4 public class StringConstructors

5 {

6 public static void main(String argsl])

7 {

8 char charArray[] = { o, ot) d At Yk
9 String s = new String("hello"),

10

11 /I use String constructors

12 String sl = new String();

13 String s2 = new String(s);

14 String s3 = new String(charArray);

15 String s4 = new String(charArray, 6, 3);
16

17 System.out.printf(

18 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n"

19 sl,s2,s3,s4); /I display strings

20 } /l end main
21 } [/l end class StringConstructors

sl =

s2 = hello

s3 = birth day
s4 = day

Line 12 instantiates a neSwing object using classtring 's ho-argument constructor and
assigns its reference ¢0. The newstring object contains no characters (d#mapty string) and

has a length of 0.

Line 13 instantiates a neswing object using classtring 's constructor that takessaing
object as an argument and assigns its refererkzx he newstring object contains the same

sequence of characters as $ithg objects that is passed as an argument to the constructor.

Line 14 instantiates a neswing object and assigns its reference3ausing classtring 's
constructor that takescaar array as an argument. The nswng object contains a copy of

the characters in the array.

Introduction to Scientific Programming Using Java Page 71

Line 15 instantiates a nesiring object and assigns its reference4ausing classtring 's
constructor that takescaar array and two integers as arguments. The secguanant
specifies the starting position (the offset) fromieh characters in the array are accessed.
Remember that the first character is at posibionhe third argument specifies the number of
characters (the count) to access in the arraynéhestring object contains a string formed
from the accessed characters. If the offset octhumt specified as an argument results in
accessing an element outside the bounds of thadeamarray, string-

IndexOutOfBoundsException is thrown.

String Methods | engt h, char At and get Chars

string methoddength, charat andgetCharsreturn the length of a string, obtain the characte
at a specific location in a string and retrieveeacd characters from a string as a char array,

respectively. The application in Fig. 10.2 demaatsts each of these methods.

1 //Fig. 10.2: StringMiscellaneous.java

2 /I This application demonstrates the length, charAt and getChars
3/ methods of the String class.

4

5 public class StringMiscellaneous

6 {

7 public static void main(String argsl])

8

9 String s1 = "hello there"

10 char charArray[] = newchar[51];

11

12 System.out.printf("s1: %s" ,s1);

13

14 /[test length method

15 System.out.printf(“\nLength of s1: %d" , sl.length());

16

17 /l loop through characters in s1 with charAt and di splay reversed
18 System.out.print(“\nThe string reversed is: ");

19

20 for (int count=sl.length() - 1; count >= 0; count--)
21 System.out.printf("%s " , sl.charAt(count));

22

23 /I copy characters from string into charArray

24 sl.getChars(0, b5, charArray, 0);

25 System.out.print("\nThe character array is: ");

26

27 for (char character: charArray)

28 System.out.print(character);

29

30 System.out.printin();
31 } /l end main

Introduction to Scientific Programming Using Java Page 72

32 } /I end class StringMiscellaneous

sl: hello there
Length of s1: 11
The string reversedis:ereht olleh

The character array is: hello

Line 15 usestring methodength to determine the number of characters in stsing_ike
arrays, strings always know their own length. Hogreunlike arrays, you cannot access a

string 's length via @ength fieldinstead you must call thgring 'slength method.

Thefor statement at lines 20-21 print the charactere®fbtrings1 in reverse order (and
separated by spaces)ing methodcharAt (line 21) returns the character at a specific tpmsi
in the string. MethodharAt receives an integer argument that is used asittexiand returns

the character at that position. Like arrays, th& #lement of a string is at position 0.

Line 24 usestring methodgetChars to copy the characters of a string into a charaotay.

The first argument is the starting index in théngtfrom which characters are to be copied. The
second argument is the index that is one paststeharacter to be copied from the string. The
third argument is the character array into whigh¢haracters are to be copied. The last
argument is the starting index where the copiedathers are placed in the target character

array. Next, line 28 prints thedar array contents one character at a time.

Comparing Strings

Classstring provides several methods for comparing stringselege demonstrated in the next

two examples.

To understand what it means for one string to leatgr than or less than another string, consider
the process of alphabetizing a series of last naMms would, no doubt, place "Jones" before
"Smith" because the first letter of "Jones" come®ie the first letter of "Smith" in the alphabet.
But the alphabet is more than just a list of 2€ekstit is an ordered set of characters. Eaclrlette
occurs in a specific position within the set. Zniere than just a letter of the alphabet it is

specifically the twenty-sixth letter of the alphaibe

Introduction to Scientific Programming Using Java Page 73

How does the computer know that one letter comé&wdanother? All characters are

represented in the computer as numeric codes.Wigecoimputer compares two strings, it

actually compares the numeric codes of the chasattehe strings.

Figure 10.3 demonstratesing methodsquals, equalsignoreCase, compareTo

regionMatches ~ and using the equality operater to comparestring objects.

Figure 10.3. String comparisons.
/I Fig. 10.3: StringCompare.java

/I String methods equals, equalsignoreCase, compare

1
2
3
4 public class StringCompare
5
6
7
8

and

To and regionMatches.

{
public static void main(String argsl])
{
String s1 = new String("hello”); /I slis a copy of "hello"
9 String s2 = "goodbye" ;
10 String s3 = "Happy Birthday" ;
11 String s4 = "happy birthday" ;
12
13 System.out.printf(
14 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n\n" ,S1,s2,s3,s84);
15
16 /I test for equality
17 if (sl equals("hello®)) //true
18 System.out.printin("s1 equals \"hello\"");
19 else
20 System.out.printin("s1 does not equal \"hello\"");
21
22 /I test for equality with ==
23 if (sl== "hello"®) /I false; they are not the same object
24 System.out.printin("s1 is the same object as \"hello\"");
25 else
26 System.out.printin("s1 is not the same object as \"hello\"");
27
28 /I test for equality (ignore case)
29 if (s3.equalsignoreCase(s4)) /I true
30 System.out.printf("%s equals %s with case ignored\n” , S3,84);
31 else
32 System.out.printin("s3 does not equal s4");
33
34 /I test compareTo
35 System.out.printf(
36 "\nsl.compareTo(s2) is %d" , sl.compareTo(s2));
37 System.out.printf(
38 "\ns2.compareTo(sl) is %d" , S2.compareTo(sl));
39 System.out.printf(
40 "\nsl.compareTo(sl) is %d" , Sl.compareTo(sl));
41 System.out.printf(
42 "\ns3.compareTo(s4) is %d" , s3.compareTo(s4));
43 System.out.printf(
44 "\ns4.compareTo(s3) is %d\n\n" , S4.compareTo(s3));
Introduction to Scientific Programming Using Java Page 74

45

46 I test regionMatches (case sensitive)

47 if (s3.regionMatches(0,4, 0, 5))

48 System.out.printin("First 5 characters of s3 and s4 match");
49 else

50 System.out.printin(

51 "First 5 characters of s3 and s4 do not match");

52

53 /I test regionMatches (ignore case)

54 if (s3. regionMatches(true , 0,s4, 0, 5))

55 System.out.printin("First 5 characters of s3 and s4 match");
56 else

57 System.out.printin(

58 "First 5 characters of s3 and s4 do not match");

59 } /l end main

60 } // end class StringCompare

sl = hello

s2 = goodbye

s3 = Happy Birthday
s4 = happy birthday

sl equals "hello"
sl is not the same object as "hello"
Happy Birthday equals happy birthday with case igno red

sl.compareTo(s2)is 1
s2.compareTo(sl)is -1
sl.compareTo(sl)is 0
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match

The condition at line 17 uses methagals to compare stringl and the string literahello”

for equality. Methoaquals (a method of classbject overridden irstring) tests any two
objects for equality the strings contained in tlie bbjects are identical. The method returns
true if the contents of the objects are equal, fard otherwise. The preceding condition is
True because stringl was initialized with the string literahello® . Methodequals uses a
lexicographical comparisont compares the integer Unicode values that reptessch character
in each string. Thus, if the strinigello” is compared with the stringlELLO", the result is

false , because the integer representation of a lowetetise is different from that of the

corresponding uppercase letter.

Introduction to Scientific Programming Using Java Page 75

The condition at line 23 uses the equality operatdo compare stringl for equality with the
string literal"hello” . Operatoe= has different functionality when it is used to qare
references than when it is used to compare valupsmitive types. When primitive-type values
are compared with=, the result isrue if both values are identical. When references are
compared with==, the result isrue if both references refer to the same object in prgmro
compare the actual contents (or state informatidpjects for equality, a method must be
invoked. In the case @firings , that method isquals . The preceding condition evaluates to

false at line 23 because the refererstewas initialized with the statement

sl = new String("hello");

which creates a newtring object with a copy of string literatello” and assigns the new

object to variable1. If s1 had been initialized with the statement

sl= "hello” ;

which directly assigns the string literaklio" to variables1, the condition would b&Rue.
Remember that Java treats all string literal obj@gth the same contents as @aéng object
to which there can be many references. Thus, Bn&3 and 23 all refer to the sasteng

object"hello" in memory.

If you are sortingstrings , you may compare them for equality with metleqdals-

IgnoreCase , which ignores whether the letters in each stareguppercase or lowercase when
performing the comparison. Thus, the stringlo" and the stringHELLO" compare as equal.
Line 29 usestring methodequalsignoreCase to compare string $Bppy Birthday for
equality with strings4happy birthday . The result of this comparisontise because the

comparison ignores case sensitivity.

Lines 35-44 use methadmpareTo to compare strings. MethadmpareTo is declared in the
Comparable interface and implemented in tBeing class. Line 36 compares strisigto string
s2. MethodcompareTo returns O if the strings are equal, a negativelramtf the string that
invokescompareTo is less than the string that is passed as an anguamd a positive number if

the string that invokesompareTo is greater than the string that is passed asgament.

Introduction to Scientific Programming Using Java Page 76

MethodcompareTo uses a lexicographical comparisonit compares tineenic values of

corresponding characters in each string.

The condition at line 47 usessing methodregionMatches to compare portions of two strings
for equality. The first argument is the startingen in the string that invokes the method. The
second argument is a comparison string. The tmgdraent is the starting index in the
comparison string. The last argument is the nurobeharacters to compare between the two
strings. The method returmgue only if the specified number of characters aréclegraphically

equal.

Finally, the condition at line 54 uses a five-argunnversion otring methodregionMatches
to compare portions of two strings for equality. &dhthe first argument is true, the method
ignores the case of the characters being comp@hedremaining arguments are identical to

those described for the four-argumesionMatches method.

The second example in this section (Fig. 10.4) destmatesstring methodsstartsWith and
endsWith. Methodmain creates arrastrings containing the stringstarted” |, "starting”
"ended” and'ending" . The remainder of methaohin consists of three for statements that test

the elements of the array to determine whether stey with or end with a particular set of

characters.

1 //Fig. 10.4: StringStartEnd.java

2 /I String methods startsWith and endsWith.

3

4 public class StringStartEnd

5

6 public static void main(String argsl])

7 A

8 String strings[] = { "started" , "starting" , '"ended" , "ending" }
9

10 I test method startsWith

11 for (String string : strings)

12 {

13 if (string.startsWith("st")

14 System.out.printf("\"%s\" starts with \"st\"\n" , string);
15 } /I end for

16

17 System.out.printin();

18

19 /I test method startsWith starting from position 2 of string
20 for (String string : strings)

Introduction to Scientific Programming Using Java Page 77

21 {

22 if (stingstartsWith(~ art’ , 2))

23 System.out.printf(

24 "\"%s\" starts with \"art\" at position 2\n" , string);
25 } /I end for

26

27 System.out.printin();

28

29 /I test method endsWith

30 for (String string : strings)

31 {

32 if (st

33 System.out.printf("\"%s\" ends with \"ed\"\n" , string);
34 } /I end for

35 } /I end main
36 } // end class StringStarteEnd

Introduction to Scientific Programming Using Java Page 78

General Learning Objectives for Week11: Arrays

Specific Objectives:

a. Manipulate a set of data values using arrays
b. Declare and use arrays of primitive types
c. Declare and use arrays of objects

Introduction to Scientific Programming Using Java Page 79

This week we will introduce an important topicdzfta structures collections of related data
items.Arrays are data structures consisting of related datasitef the same type. Arrays are
fixed-length entitiesthey remain the same lengttedthey are created, although an array variable

may be reassigned such that it refers to a new afra different length.

Arrays

An array is a group of variables (callel@mentsor componentg containing values that all have
the same type. Recall that types are divided iwtodategories primitive types and reference
types. Arrays are objects, so they are consideredence types. As you will soon see, what we
typically think of as an array is actually a refeze to an array object in memory. The elements
of an array can be either primitive types or rafeeetypes. To refer to a particular element in an
array, we specify the name of the reference tatheey and the position number of the element

in the array. The position number of the elemegtited the elementisdex or subscript

Figure 11.1 shows a logical representation of éeger array called. This array contains 12
elements. A program refers to any one of theseaigiwith ararray-access expressiothat
includes the name of the array followed by the indkthe particular element sguare
brackets ([). The first element in every array hagex zeroand is sometimes called the
zeroth element Thus, the elements of arrayarec[0] ,c[1] ,c[2] andsoon. The
highest index in array is 11, which is 1 less than 12 the number of efemmn the array. Array

names follow the same conventions as other variadntees.

c[0] 11
c[1] -34
c[2] 100
c[3] 32
c[4] 98
c[5] -987
c[6] 112
c[7] 2309
c[8] 7
c[9] 8
c[10] 23
c[11] 1

Introduction to Scientific Programming Using Java Page 80

Figure 11.1

An index must be a nonnegative integer. A programuse an expression as an index. For

example, if we assume that variable a end variable is 6, then the statement

clat+tb]+= 2;

adds2 to array elemendf 11] . Note that an indexed array name is an array-acgwession.
Such expressions can be used on the left side a$signment to place a new value into an array

element.

Let us examine arrayin Fig. 7.1more closely. Theameof the array ig. Every array object
knows its own length and maintains this informatio@l engt h field. The expressioalength
accesses arrayslength field to determine the length of the array. Ndtatf even though the
length member of an array blic , it cannot be changed because itiigsa variable. This
array's 12 elements are referred te[@s] ,c[1] ,c[2] ,..,c[11] . The value og[0]
is-45 ,the value ot[1] ise6, the value ot[2] is0, the value ot[7] Iis62 and the value
ofc[11] is78. To calculate the sum of the values containeti@itst three elements of array

c and store the result in variaklen, we would write

sum = ¢[0]+c[11+l 21

To divide the value o[6] by 2 and assign the result to the variableve would write
x=c[61/ 2,

Declaring and Creating Arrays

Array objects occupy space in memory. Like othgects, arrays are created with keywaed.
To create an array object, the programmer spectiesype of the array elements and the
number of elements as part ofamay-creation expressionthat uses keyworgew. Such an
expression returns a reference that can be storad array variable. The following declaration
and array-creation expression create an array otpetaining 12nt elements and store the

array's reference in variabie

Introduction to Scientific Programming Using Java Page 81

int cf] = newint [12];

This expression can be used to create the arrayrsimi=ig. 7.1 This task also can be
performed in two steps as follows:

int cf; /I declare the array variable
c= newint [121]; Il create the array; assign to array variable

In the declaration, the square brackets followhwy\tariable name indicate that is a variable
that will refer to an array (i.e., the variable vgilore an array reference). In the assignment
statement, the array variakleeceives the reference to a new array ahfl2elements. When an
array is created, each element of the array res@iaefault valuezero for the numeric primitive-
type elementdalse for boolean elements andull for references (any nonprimitive type). As
we will soon see, we can provide specific, nondiefaitial element values when we create an

array.

A program can create several arrays in a singleggon. The followingstring array

declaration reserves 100 elementsofand 27 elements far:

String b[] = new String[100], X[= new String[2717,

In this case, the class naisieng applies to each variable in the declaration. Eadability,

we prefer to declare only one variable per dedlamags in:

String b[] = new String[100]; /I create array b
String x[] = new String[271; I/l create array X

When an array is declared, the type of the arralyth@ square brackets can be combined at the
beginning of the declaration to indicate that ladl tdentifiers in the declaration are array

variables. For example, the declaration

double [] arrayl, array?;

indicates thafrrayl andarray2 are "array otiouble " variables. The preceding declaration is

equivalent to:

Introduction to Scientific Programming Using Java Page 82

double arrayl[];

double array2[];
or

double [] arrayl;

double [] array2;

The preceding pairs of declarations are equivaleabhronly one variable is declared in each
declaration, the square brackets can be placeeraifter the type or after the array variable

name.

A program can declare arrays of any type. Evergneld of a primitive-type array contains a
value of the array's declared type. Similarly, maaray of a reference type, every element is a
reference to an object of the array's declared tfypeexample, every element ofian array is
an int value, and every element dftang array is a reference tosaing object.

Examples Using Arrays

This section presents several examples that denatasleclaring arrays, creating arrays,

initializing arrays and manipulating array elements

Creating and Initializing an Array

The application of Fig. 11.2 uses keywaes to create an array of 1@ elements, which are

initially zero (the default foint variables).

Figure 11.2. Initializing the elements of an array to default values of zero.

1 /I Fig. 11.2: InitArray.java

2 |/l Creating an array.

431 public class InitArray

g { public static void main(String argsl])

; { int arrayf]; /Il declare array named array

190 array = new int[10]; // create the space for array

E System.out.printf("%s%8s\n" , "Index" , "Value"); //column headings
1131 /I output each array element's value

Introduction to Scientific Programming Using Java Page 83

15 for (int counter = 0; counter < array.length; counter++)

16 System.out.printf("%5d%8d\n" , counter, array[counter]);
17} /I end main

18 } // end class InitArray

Index Value
0O O
1 0
2 0
3 0
4 0
5 0
6 O
7 0
8 0
9 0

Line 8 declarearray a reference capable of referring to an arraytofelements. Line 10

creates the array object and assigns its refetengariablearray . Line 12 outputs the column
headings. The first column contains the index @#®ach array element, and the second column
contains the default value (0) of each array elédmen

Thefor statement in lines 1516 outputs the index numiegrésented byounter) and value of
each array element (representechivyy[counter |). Note that the loop control variable
counter is initially oindex values start at 0, so using zero-based aogiatiows the loop to

access every element of the array. fohes loop-continuation condition uses the expression
array .length (line 15) to determine the length of the arraythiis example, the length of the
array is 10, so the loop continues executing ag &mthe value of control variakleunter is

less than 10. The highest index value of a 10-ehktmeay is 9, so using the less-than operator in
the loop-continuation condition guarantees thaldloge does not attempt to access an element
beyond the end of the array (i.e., during the fiteation of the loopsounter is9). We will

soon see what Java does when it encounters sumlt-afirrange index at execution time.

Using an Array Initializer

A program can create an array and initialize isrednts with a@rray initializer , which is a

comma-separated list of expressions (callethdimlizer list) enclosed in braceg énd}). In

Introduction to Scientific Programming Using Java Page 84

this case, the array length is determined by tmeb®x of elements in the initializer list. For

example, the declaration

int n[={ 10, 20, 30, 40, 50}

creates a five-element array with index valogs, 2, 3 and4. Elemenin[0] s initialized to
10,n[1] s initialized to20, and so on. This declaration does not requireto create the
array object. When the compiler encounters an ategjaration that includes an initializer list,
the compiler counts the number of initializershe tist to determine the size of the array, then

sets up the appropriatew operation "behind the scenes."

The application in Fig. 7.3 initializes an integeray with 10 values (line 9) and displays the
array in tabular format. The code for displaying thray elements (lines 1415) is identical to
that in Fig. 7.2 (lines 1516).

1 /I Fig. 7.3: InitArray.java

2/l Initializing the elements of an array with an ar ray initializer.
3

4 public class InitArray

5

6 public static void main(String argsl])

7 A

8 [l initializer list specifies the value for each el ement
9 int array[] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37}
10

11 System.out.printf("%s%8s\n" , "Index" , "Value"); //column headings
12

13 /l output each array element's value

14 for (int counter = 0; counter < array.length; counter++)

15 System.out.printf("%5d%8d\n" , counter, array|[counter |);

16 } /I end main
17 } // end class InitArray

Index Value
32
27
64
18
95
14
90
70
60
37

O©CoOoO~NOOUIdWNEO

Introduction to Scientific Programming Using Java Page 85

Calculating a Value to Store in Each Array Element

Some programs calculate the value stored in eaaly alement. The application in Fig. 11.4
creates a 10-element array and assigns to eacleri@me of the even integers from 2 to 20 (
4,6, ...,20). Then the application displays the array in tabfbrmat. Theor statement at lines
1213 calculates an array element's value by myiltiglthe current value of ther loop's control

variablecounterby 2, then adding.

1 /I Fig. 11.4: InitArray.java

2 /I Calculating values to be placed into elements of an array.
3

4 public class InitArray

5 {

6 public static void main(String argsl])

7 {

8 final int ARRAY_LENGTE 10; /I declare constant

9 int array[] = newint [ARRAY_LENGTH // create array

10

11 Il calculate value for each array element

12 for (int counter = 0; counter < array.length; counter++)

13 array[counter] = 2+ 2 *counter;

14

15 System.out.printf("%s%8s\n" , "Index" , "Value"); //column headings
16

17 /l output each array element's value

18 for (int counter= 0; counter < array.length; counter++)

19 System.out.printf("%5d%8d\n" , counter, array[counter]);

20 } /I end main
21 } /I end class InitArray

Index Value
2
4
6
8
10
12
14
16
18
20

O©CoOoO~NOOUA~,WNEO

Line 8 uses the modifién nal to declare theonstant variableARRAY_LENGTHw~Vhose value is
10. Constant variables (also knownfiasl variables) must be initialized before they areduse
and cannot be modified thereafter. If an attemptasle to modify &nal variable after it is

initialized in its declaration (as in line 8), thempiler issues the error message

Introduction to Scientific Programming Using Java Page 86

cannot assign a value to final variable variableName

If an attempt is made to access the valuefoha variable before it is initialized, the compiler
issues the error message

variable variableNamenight not have been initialized

Summing the Elements of an Array

Often, the elements of an array represent a sefrieslues to be used in a calculation. For
example, if the elements of an array represent exates, a professor may wish to total the
elements of the array and use that sum to calctiatelass average for the exam. The examples

using classradeBook later in the chapter, namelyg. 7.14andFig. 7.18 use this technique.

The application in Fig. 11.5 sums the values coethin a 10-element integer array. The
program declares, creates and initializes the atéipe 8. Theor statement performs the
calculations. [Note: The values supplied as amaalizers are often read into a program rather
than specified in an initializer list. For exampd@, application could input the values from a user
or from a file on disk. Reading the data into agoam makes the program more reusable,

because it can be used with different sets of data.

1 /I Fig. 11.5: SumArray.java

2 /I Computing the sum of the elements of an array.

3

4 public class SumArray

5 {

6 public static void main(String argsl])

7 {

8 int array[] = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87}
9 int total = 0;

10

11 /I add each element's value to total

12 for (int counter = 0; counter < array.length; counter++)

13 total += array[counter J;

14

15 System.out.printf("Total of array elements: %d\n" , total);

16 } /I end main
17 } // end class SumArray

Total of array elements: 849

Introduction to Scientific Programming Using Java Page 87

General Learning Objectives: Event Driven ProgramsWEEK 12

Specific Objectives:

a. Understand the concepts of event driven programs
b. Understand how to place objects on a frame

c. Write simple event drive programs

Introduction to Scientific Programming Using Java Page 88

A graphical user interface (GUI) presents a user-friendly mechanism for interaatiitg an
application. A GUI (pronounced "GOO-ee") gives aplecation a distinctive "look" and "feel."
Providing different applications with consistemtuitive user interface components allows users
to be somewhat familiar with an application, sa thay can learn it more quickly and use it
more productively.

GUIs are built fromGUI components These are sometimes callamhtrolsor widgetsshort for
window gadget# other languages. A GUI component is an objett wihich the user interacts
via the mouse, the keyboard or another form oftinguch as voice recognition.

Overview of Swing Components

Though it is possible to perform input and outpsihg theloptionPane dialogs presented in
earlier weeks, most GUI applications require mdab@ ate, customized user interfaces. The
remainder of this text discusses many GUI companiat enable application developers to
create robust GUIs. Figure 13.4 lists sev&maing GUI componentsfrom package

j avax. swi ng that are used to build Java GUIs. Most Swing camepts argure Java
componentsthey are written, manipulated and digglapmpletely in Java. They are part of the
Java Foundation Classes (JB&)a's libraries for cross-platform GUI developméfigit

java.sun.com/products/jfor more information on JFC.

Figure 13.1 Some basic GUI components.

Component Description
JLabel Displays uneditable text or icons.

JTextField | Enables user to enter data from the keyboard. Garba used to display editable
or uneditable text.

JButton Triggers an event when clicked with the mouse.
JCheckBox | Specifies an option that can be selected or nettal.

JComboBox | Provides a drop-down list of items from which tleecan make a selection by

Introduction to Scientific Programming Using Java Page 89

Figure 13.1 Some basic GUI components.
Component Description
clicking an item or possibly by typing into the box

JList Provides a list of items from which the user carkena selection by clicking on

any item in the list. Multiple elements can be stdd.

JPanel Provides an area in which components can be plateédrganized. Can also be

used as a drawing area for graphics.

Displaying Text and Images in a Window

Our next example introduces a framework for bugd®U| applications. This framework uses
several concepts that you will see in many of oull &oplications. This is our first example in
which the application appears in its own window.dt¥h\@indows you will create are an instance
of classiFrame or a subclass afFrame . JFrame provides the basic attributes and behaviors of a
windowa title bar at the top of the window, andtbas to minimize, maximize and close the
window. Since an application's GUI is typically sgiie to the application, most of our examples
will consist of two classesa subclassieime that helps us demonstrate new GUI concepts and

an application class in whichain creates and displays the application's primarydoin

Labeling GUI Components

A typical GUI consists of many components. In @é6GUI, it can be difficult to identify the
purpose of every component unless the GUI desigrmstides text instructions or information
stating the purpose of each component. Such téxtas/n as dabeland is created with class
JLabel a subclass afcomponent . A JLabel displays a single line of read-only text, an imawe

both text and an image. Applications rarely chaadgbel's contents after creating it.

The application of Fig. 13.2 and Fig.13.3 demonsfraeveralLabel features and presents the
framework we use in most of our GUI examples. Werdit highlight the code in this example

since most of it is new. [Note: There are many nfeatures for each GUI component than we

Introduction to Scientific Programming Using Java Page 90

can cover in our examples. To learn the completaildeof each GUI component, visit its page

in the online documentation.

1 //Fig. 13.2: LabelFrame.java

2 /I Demonstrating the JLabel class.

3 import java.awt.FlowLayout; /I specifies how components are arranged

4 import javax.swing.JFrame; /I provides basic window features

5 import javax.swing.JLabel; /I displays text and images

6 import javax.swing.SwingConstants; /I common constants used with Swing
7 import javax.swing.lcon; /l interface used to manipulate images

8 import javax.swing.Imagelcon; /I loads images

9

10 public class LabelFrame extends JFrame

11 {

12 private JLabel labell; /I JLabel with just text

13 private JLabel label2; /I JLabel constructed with text and icon

14 private JLabel label3; /I JLabel with added text and icon

15

16 /I LabelFrame constructor adds JLabels to JFrame

17 public LabelFrame()

18 {

19 super ("Testing JLabel");

20 setLayout(new FlowLayout()); /I set frame layout

21

22 /I JLabel constructor with a string argument

23 labell = new JLabel("Label with text");

24 labell.setToolTipText("This is labell");

25 add(labell); /[add labell to JFrame

26

27 /I JLabel constructor with string, Icon and alignme nt arguments
28 Icon bug = new Imagelcon(getClass().getResource("bugl.gif"));
29 label2 = new JLabel("Label with text and icon" , bug,

30 SwingConstants.LEFT);

31 label2.setToolTipText("This is label2");

32 add(label2); /I add label2 to JFrame

33

34 label3 = new JLabel(); /I JLabel constructor no arguments

35 label3.setText("Label with icon and text at bottom");
36 label3.setlcon(bug); /I add icon to JLabel

37 label3.setHorizontal TextPosition(SwingConstants.CENTER);
38 label3.setVerticalTextPosition(SwingConstants.BOTTOM);
39 label3.setToolTipText("This is label3");

40 add(label3); /[add label3 to JFrame

41 } /I end LabelFrame constructor

42 } /l end class LabelFrame

/[Fig. 13.3: LabelTest.java
/I Testing LabelFrame.
import javax.swing.JFrame;

public class LabelTest

UL WNBE

Introduction to Scientific Programming Using Java Page 91

7 public static void main(String argsl])

8 {

9 LabelFrame labelFrame = new LabelFrame(); Il create LabelFrame
10 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 labelFrame.setSize(275, 180); /I setframe size

12 labelFrame.setVisible(true); // display frame

13} /l end main
14 } // end class LabelTest

-

o Testing JLabel =
L abel with text

@ Lahbel with text and icon
S
B

Label with icon and text at bottom

Text Fields and an Introduction to Event HandlinghviNested Classes

Normally, a user interacts with an application'sI@&indicate the tasks that the application
should perform. For example, when you write an d-man e-mail application, clicking the

Send button tells the application to send the d-todhe specified e-mail addresses. GUIs are
event driven. When the user interacts with a GUI componentjriteractionknown as an
evendrives the program to perform a task. Some comments (user interactions) that might
cause an application to perform a task includeirigea button, typing in a text field, selecting

an item from a menu, closing a window and movirgriouse. The code that performs a task in
response to an event is calledement handlerand the overall process of responding to events is

known asevent handling

In this section, we introduce two new GUI composédhat can generate everntsxt Fi el ds
andJpPasswor dFi el ds (packaggavax.swing). ClassiTextField extends class
JText Conponent (packaggavax.swing.text), which provides many features common to

Swing's text-based components. ClassswordField extendsiTextField and adds several

Introduction to Scientific Programming Using Java Page 92

methods that are specific to processing passwiialsh of these components is a single-line area
in which the user can enter text via the keyboApplications can also display text in a

JTextField (See the output of Fig. 13.3).JRasswordField shows that characters are being
typed as the user enters them, but hides the attasahcters with aeacho characteassuming

that they represent a password that should renmawik only to the user.

When the user types data intoTaxtField or aJPasswordField , then presses Enter, an event
occurs. Our next example demonstrates how a progaanperform a task when that event

occurs. The techniques shown here are applicatadk @Ul components that generate events.

The application of Fig. 13.2 and Fig. 13.3 usess#aiTextField andJPasswordField to

create and manipulate four text fields. When thex tigoes in one of the text fields, then presses
Enter, the application displays a message dialagcbataining the text the user typed. You can
only type in the text field that is "focus" A component receives the focus when the usekli
the component. This is important because the telkt Wwith the focus is the one that generates an
event when the user presses Enter. In this examvplen the user presses Enter in the
JPasswordField , the password is revealed. We begin by discudgbmgetup of the GUI, then

discuss the event-handling code.

1 /I Fig. 13.2: TextFieldFrame.java

2 /I Demonstrating the JTextField class.

3 import java.awt.FlowLayout;

4 import java.awt.event.ActionListener;

5 import java.awt.event.ActionEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JTextField;

8 import javax.swing.JPasswordField;

9 import javax.swing.JOptionPane;

10

11 public class TextFieldFrame extends JFrame

12 {

13 private JTextField textFieldl; /I text field with set size

14 private JTextField textField2; /I text field constructed with text
15 private JTextField textField3; /I text field with text and size

16 private JPasswordField passwordField; /I password field with text
17

18 Il TextFieldFrame constructor adds JTextFields to J Frame
19 public TextFieldFrame()

20 {

21 super ("Testing JTextField and JPasswordField");

22 setLayout(new FlowLayout()); Il set frame layout

23

24 /I construct textfield with 10 columns

Introduction to Scientific Programming Using Java Page 93

25 textFieldl = new JTextField(10);

26 add(textFieldl); /I add textFieldl to JFrame

27

28 /I construct textfield with default text

29 textField2 = new JTextField("Enter text here");
30 add(textField2); /I add textField2 to JFrame

31

32 /I construct textfield with default text and 21 col

33 textField3 = new JTextField("Uneditable text field"
34 textField3.setEditable(false); // disable editing
35 add(textField3); /I add textField3 to JFrame

36

37 /I construct passwordfield with default text

38 passwordField = new JPasswordField("Hidden text"
39 add(passwordField); Il add passwordField to JFrame
40

41 /I register event handlers

42 TextFieldHandler handler = new TextFieldHandler();
43 textField1l.addActionListener(handler);

44 textField2.addActionListener(handler);

45 textField3.addActionListener(handler);

46 passwordField.addActionListener(handler);

47 '} /I end TextFieldFrame constructor

48

49 [l private inner class for event handling

50 private class TextFieldHandler implements ActionListener
51 {

52 /I process text field events

53 public void actionPerformed(ActionEvent event)

54 {

55 String string = " . /] declare string to display

56

57 /I user pressed Enter in JTextField textFieldl

58 if (event.getSource() == textFieldl)

59 string = String.format("textFieldl: %s" ,
60 event.getActionCommand());

61

62 /I user pressed Enter in JTextField textField2

63 elseif (event.getSource() == textField2)

64 string = String.format("textField2: %s" ,
65 event.getActionCommand());

66

67 /I user pressed Enter in JTextField textField3

68 elseif (event.getSource() == textField3)

69 string = String.format("textField3: %s" ,
70 event.getActionCommand());

71

72 /I user pressed Enter in JTextField passwordField

73 else if (‘event.getSource() == passwordField)

74 string = String.format("passwordField: %s"
75 new String(passwordField.getPassword()));

76

77 /I display JTextField content

78 JOptionPane.showMessageDialog(null , string);
79 } /I end method actionPerformed

80 } /I end private inner class TextFieldHandler

81 } //end class TextFieldFrame

umns

21);

Introduction to Scientific Programming Using Java

Page 94

1 /I Fig. 13.3: TextFieldTest.java

2 [/l Testing TextFieldFrame.

3 import javax.swing.JFrame;

4

5 public class TextFieldTest

6 {

7 public static void main(String argsl])

8

9 TextFieldFrame textFieldFrame = new TextFieldFrame();
10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(325, 100); /I setframe size
12 textFieldFrame.setVisible(true); //display frame

13} /I end main
14 } // end class TextFieldTest

e

, Message ==f
&y Testing JTextField and JPasswordFi... | = || & |[+5] [
@ textField1: Dele
Cele | |EntertE}:1 here| 3
Uneditable text field] OK, i
. . | Message =
£p Testing ITextField and JPasswordFi... [= |[= |[22 | @
textField?: Moses
Dele | |ru1|:|ses |
Uneditable text fiald |jffffffffff 0K
Message 3

-

@ passwordField: banana

&y Testing JTextField and JPasswordFi... | = |[& || 22

Cele | |r-u1|:|ses

Lneditable text field OK

'

Lines 39 import the classes and interfaces weruies example. ClasxtFieldFrame
extendsiFrame and declares thregextField variables and aPasswordField variable (lines
13-16). Each of the corresponding text fields gantiated and attached to thetFieldFrame

in the constructor (lines 1947).

Introduction to Scientific Programming Using Java Page 95

Creating the GUI

Line 22 sets the layout of thextFieldFrame to FlowLayout . Line 25 creatextFieldl

with 10 columns of text. The width in pixels of a textwwin is determined by the average width
of a character in the text field's current font. &lihiext is displayed in a text field and the text i
wider than the text field itself, a portion of ttext at the right side is not visible. If you are
typing in a text field and the cursor reaches thbtredge of the text field, the text at the left
edge is pushed off the left side of the text fetdl will no longer be visible. Users can use the
left and right arrow keys to move through the cagtglkext even though the entire text will not

be visible at one time. Line 26 addstField1l to theJdFrame .

Line 29 createsxtField2 with the initial text'Enter text here" to display in the text field.
The width of the text field is determined by thedthi of the default text specified in the

constructor. Line 30 addsxtField2 to theJFrame.

Line 33 creategxtField3 and calls theTextField constructor with two argumentsthe
default text'Uneditable text field" to display and the number of columas)(The width
of the text field is determined by the number diicans specified. Line 34 uses method
set Edi t abl e (inherited bydTextField from classITextComponent) to make the text field
uneditablei.e., the user cannot modify the texhetext field. Line 35 addsxtField3 to the

JFrame .

Line 38 createpasswordField ~ with the text'Hidden text" to display in the text field. The
width of the text field is determined by the widththe default text. When you execute the
application, notice that the text is displayed atrimg of asterisks. Line 39 adpissswordField

to theJFrame .

Steps Required to Set Up Event Handling for a GUI Component

This example should display a message dialog aantathe text from a text field when the user
presses Enter in that text field. Before an appboacan respond to an event for a particular GUI

component, you must perform several coding steps:

Introduction to Scientific Programming Using Java Page 96

1. Create a class that represents the event handler.

2. Implement an appropriate interface, known as an event-listener interface, in the class from Step

1.

3. Indicate that an object of the class from Steps 1 and 2 should be notified when the event occurs.

This is known as registering the event handler.

Using a Nested Class to Implement an Event Handler

All the classes discussed so far were so-catipdevel classethat is, the classes were not
declared inside another class. Java allows yoedttace classes inside other classesthese are
callednested classedNested classes candiatic ornon-static . Nonstatic nested classes

are callednner classesand are frequently used for event handling.

Before an object of an inner class can be cre#itede must first be an object of the top-level
class that contains the inner class. This is reqgudecause an inner-class object implicitly has a
reference to an object of its top-level class. €heralso a special relationship between these
objectsthe inner-class object is allowed to diseaticess all the instance variables and methods
of the outer class. A nested class thatasc does not require an object of its top-level class

and does not implicitly have a reference to analpéthe top-level class.

The event handling in this example is performedbybject of therivate inner class
TextFieldHandler (lines 5080). This class sivate because it will be used only to create
event handlers for the text fields in top-levelssfeextFieldFrame . As with other members of a

class, inner classes can be declaietic |, protected Of private

GUI components can generate a variety of eventssponse to user interactions. Each event is
represented by a class and can be processed otig lappropriate type of event handler. In
most cases, the events a GUI component supportieaceibed in the Java APl documentation
for that component's class and its superclassesnWie user presses Enter isTextField or
JPasswordField , the GUI component generatesAami onEvent (packaggava.awt.event).

Such an event is processed by an object that ingslesrihe interfaceact i onLi st ener (package

Introduction to Scientific Programming Using Java Page 97

java.awt.event). The information discussed here is availabldneéntava APl documentation
for classeSTextField andActionEvent . SinceJPasswordField IS a subclass affextField

JPasswordField supports the same events.

To prepare to handle the events in this exampteerinlasSextFieldHandler implements
interfaceActionListener and declares the only method in that interdatih-Performed

(lines 53-79). This method specifies the tasksetidgsm when amctionEvent — occurs. So inner
classTextFieldHandler satisfies Steps 1 and 2 listed earlier in thisisecWe'll discuss the

details of methodctionPerformed shortly.

Registering the Event Handler for Each Text Field

In theTextFieldFrame constructor, line 42 creategextFieldHandler object and assigns it to
variablehandler . This object'actionPerformed ~ method will be called automatically when the
user presses Enter in any of the GUI's text figtdsvever, before this can occur, the program
must register this object as the event handleedah text field. Lines 4346 are the event-
registration statements that speciéyidier as the event handler for the thogextrFields and
theJPasswordField . The application callgTextField methodaddAct i onLi st ener to register
the event handler for each component. This methoeives as its argument AttionListener
object, which can be an object of any class thatementsactionListener . The object

handler IS anActionListener , because clas®xtFieldHandler implements

ActionListener . After lines 43-46 execute, the object handktens for eventdNow, when the
user presses Enter in any of these four text fietigthodactionPerformed (line 5379) in class
TextFieldHandler is called to handle the event. If an event handleot registered for a
particular text field, the event that occurs whies iser presses Enter in that text field is
consumede., it is simply ignored by the application.

Details of Class Text Fi el dHandl er's act i onPer f or red Method

In this example, we are using one event-handlingatactionPerformed method (lines 5379)
to handle the events generated by four text fiebitsce we'd like to output the name of each text
field's instance variable for demonstration purgoses must determine which text field

generated the event each timeonPerformed is called. The GUI component with which the

Introduction to Scientific Programming Using Java Page 98

user interacts is thevent source In this example, the event source is one oféReftelds or the
password field. When the user presses Enter whiteod these GUI components has the focus,
the system creates a unicamgionEvent object that contains information about the evbat t
just occurred, such as the event source and thentéxe text field. The system then passes this
ActionEvent oObject in a method call to the event listenatt®nPerformed method. In this
example, we display some of that information inessage dialog. Line 55 declares $irng

that will be displayed. The variable is initializedth theempty string@ string containing no
characters. The compiler requires this in case wbtige branches of the nestedin lines 5875

executes.

ActionEvent methodgetSource (called in lines 58, 63, 68 and 73) returns arezfee to the
event source. The condition in line 58 asks, "&sabent sourcextFieldl ~ ?" This condition
compares the references on either side ofthaperator to determine whether they refer to the
same object. If they both referttxtFieldl , then the program knows that the user pressed
Enter intextFieldl . In this case, lines 59-60 creatsténg containing the message that line
78 will display in a message dialog. Line 60 use®nEvent methodget Acti onCommand to

obtain the text the user typed in the text fielat thenerated the event.

If the user interacted with tti@asswordField , lines 7475 us@PasswordField method
get Passwor d to obtain the password and createshieag to display. This method returns the
password as an array of tyger that is used as an argument t&tdng constructor to create a

string containing the characters in the array.

Introduction to Scientific Programming Using Java Page 99

General Learning Objectives for Week14: Inheritane

Specific Objectives:

a. Understand the concepts of inheritance
b. Understand of the is-a and has-a relationshiphentance hierarchy

c. Write simple Java programs implementing inheritance

Introduction to Scientific Programming Using Java Page 100

Introduction to Inheritance

This week we will discuss one of the primary feastuof object-oriented programming (OOP)
that isinheritance, which is a form of software reuse in which a reass is created by
absorbing an existing class's members and emhatlishem with new or modified capabilities.
With inheritance, programmers save time during mogdevelopment by reusing proven and
debugged high-quality software. This also incredisedikelihood that a system will be
implemented effectively.

When creating a class, rather than declaring caelglaew members, the programmer can
designate that the new class should inherit the meesnof an existing class. The existing class is
called thesuperclass and the new class is teabclass (The C++ programming language refers
to the superclass as thase clasand the subclass as ttherived class) Each subclass can

become the superclass for future subclasses.

A subclass normally adds its own fields and meth®tsrefore, a subclass is more specific than
its superclass and represents a more specialipeg @f objects. Typically, the subclass exhibits

the behaviors of its superclass and additional iehathat are specific to the subclass.

Thedirect superclassis the superclass from which the subclass exiliciherits. Anindirect
superclassis any class above the direct superclass iltes hierarchy which defines the
inheritance relationships between classes. In Jagalass hierarchy begins with clagsgect

(in packagegava.lang), which every class in Java directly or indireaitends(or "inherits
from"). In the case ddingle inheritance a class is derived from one direct superclasa,Ja
unlike C++, does not support multiple inheritamaiCh occurs when a class is derived from
more than one direct superclass).

Experience in building software systems indicalted significant amounts of code deal with
closely-related special cases. When programmerngracecupied with special cases, the details
can obscure the big picture. With object-orientempamming, programmers focus on the

commonalities among objects in the system rathaar tin the special cases.

Introduction to Scientific Programming Using Java Page 101

We distinguish between thes-a" relationship and thé'has-a" relationship . "Is-a" represents
inheritance. In an "is-a" relationship, an objechsubclass can also be treated as an obje of it
superclass. For example, a car is a vehicle. Byrast) "has-a" represents composition. In a
"has-a" relationship, an object contains one orenudject references as members. For example,

a car has a steering wheel (and a car object hefer@nce to a steering wheel object).

New classes can inherit from classeslass libraries.Organizations develop their own class
libraries and can take advantage of others availabrldwide. Some day, most new software
likely will be constructed fronstandardized reusable componentgust as automobiles and
most computer hardware are constructed today.willigacilitate the development of more

powerful, abundant and economical software.

Superclasses and Subclasses

Often, an object of one class "is an" object ofthaoclass as well. For example, in geometry, a
rectangle is a quadrilateral (as are squares,lplglams and trapezoids). Thus, in Java, class
Rectangle can be said to inherit from clagsadrilateral . In this context, class

Quadrilateral is a superclass and classtangle is a subclass. A rectangle is a specific type
of quadrilateral, but it is incorrect to claim tleatery quadrilateral is a rectanglethe quadrildtera
could be a parallelogram or some other shape. &igjirl lists several simple examples of
superclasses and subclassesnote that superckasdde be "more general” and subclasses tend
to be "more specific.”

Figure 14.1. Inheritance examples.

Superclass = Subclasses

Student GraduateStudent , UndergraduateStudent
Shape Circle , TRiangle , Rectangle

Loan CarLoan , HomelmprovementLoan , MortgagelLoan
Employee Faculty , Staff

BankAccount | checkingAccount , SavingsAccount

Introduction to Scientific Programming Using Java Page 102

Because every subclass object "is an" object @uperclass, and one superclass can have many
subclasses, the set of objects represented byeactags is typically larger than the set of objects
represented by any of its subclasses. For exatmgeuperclass Vehicle represents all vehicles,
including cars, trucks, boats, bicycles and soByncontrast, subclassar represents a smaller,

more specific subset of vehicles.

Inheritance relationships form tree-like hierarethistructures. A superclass exists in a
hierarchical relationship with its subclasses. Wtlasses participate in inheritance
relationships, they become "affiliated" with otlodisses. A class becomes either a superclass,
supplying members to other classes, or a subétdeey;jting its members from other classes. In

some cases, a class is both a superclass andlassubc

Let us develop a sample class hierarchy also cal@theritance hierarchy. A university
community has thousands of members, including eyegle, students and alumni. Employees
are either faculty members or staff members. Facaémbers are either administrators (such as
deans and department chairpersons) or teachers.tihdtthe hierarchy could contain many
other classes. For example, students can be geaduahdergraduate students. Undergraduate

students can be freshmen, sophomores, juniorsarse

Now consider thehape inheritance hierarchy. This hierarchy begins wsitiperclasshape,
which is extended by subclasse®DimensionalShape andThreeDimensionalShapeShapes

are eithemMwoDimensionalShapes Or ThreeDimensionalShapes . The third level of this
hierarchy contains some more specific typeswaiDimensionalShapes and
THReeDimensionalShapes . From the bottom of the hierarchy to the topmasgtesclass in this
class hierarchy to identify several "is-a" relasbips. For instance,téangle is a
TwoDimensionalShape and is ahape, while aSphere is aThreeDimensionalShape and is a
Shape. Note that this hierarchy could contain many ottlasses. For example, ellipses and

trapezoids ar&woDimensionalShapes

Not every class relationship is an inheritanceti@iship. The "has-a" relationship, in which
classes have members that are references to obfemitser classes. Such relationships create

classes by composition of existing classes. Fom@ka given the class&nployee , BirthDate

Introduction to Scientific Programming Using Java Page 103

andTelephoneNumber , it iS improper to say that @amployee is aBirthDate or that an
Employee IS aTelephoneNumber . However, arEmployee has aBirthDate , and arEmployee

has arelephoneNumber .

It is possible to treat superclass objects andlaabobjects similarly their commonalities are
expressed in the members of the superclass. Olgkalisclasses that extend a common
superclass can be treated as objects of that dage(te., such objects have an "is-a"
relationship with the superclass). However, supsscbbjects cannot be treated as objects of
their subclasses. For example, all cars are vedjiblg not all vehicles are cars (the other

vehicles could be trucks, planes or bicycles, i@meple).

One problem with inheritance is that a subclassitaerit methods that it does not need or
should not have. Even when a superclass methqapiejariate for a subclass, that subclass often
needs a customized version of the method. In sasés; the subclass caverride (redefine)

the superclass method with an appropriate impleatient as we will see often in the chapter's

code examples.

Relationship between Superclasses and Subclasses

In this section, we use an inheritance hierarcmtaiaing types of employees in a company's
payroll application to discuss the relationshipAmsn a superclass and its subclass. In this
company, commission employees (who will be repreegkas objects of a superclass) are paid a
percentage of their sales, while base-salaried desiom employees (who will be represented as

objects of a subclass) receive a base salary ghescantage of their sales.

We divide our discussion of the relationship betweemmission employees and base-salaried
commission employees into five examples. The éxatmple declares class
CommissionEmployee , which directly inherits from classbject and declares asivate

instance variables a first name, last name, seei@lrity number, commission rate and gross

(i.e., total) sales amount.

The second example declares clB&s:PlusCommissionEmployee , which also directly inherits

from classObject and declares asivate instance variables a first name, last name, social

Introduction to Scientific Programming Using Java Page 104

security number, commission rate, gross sales an@auhbase salary. We create the latter class
by writing every line of code the class requireswi# soon see that it is much more efficient to

create this class by inheriting from cl&gsnmissionEmployee

The third example declares a separak@PlusCommissionEmployee2 class that extends class
CommissionEmployee (i.€., aBasePlusCommissionEmployee2 IS aCommissionEmployee Who
also has a base salary) and attempts to acces<etasissionEmployee 'S private

membersthis results in compilation errors, bec#fusesubclass cannot access the superclass's

private instance variables.

The fourth example shows thatdémmissionEmployee 's instance variables are declared as
protected , aBasePlusCommissionEmployee3 class that extends classmmissionEmployee2
can access that data directly. For this purposalegtare classommissionEmployee2 with
protected instance variables. Both of tBasePlusCommissionEmployee classes contain
identical functionality, but we show how the cl@ssePlusCommissionEmployee3 is easier to

create and manage.

After we discuss the convenience of usingected instance variables, we create the fifth
example, which sets tl@mmissionEmployee instance variables back gavate in class
CommissionEmployee3 to enforce good software engineering. Then we dhow a separate
BasePlusCommissionEmployee4 class, which extends classmmissionEmployee3 , can use
CommissionEmployee3 'Spublic methods to manipulateommissionEmployee3 'S private

instance variables

Creating and Using a Commi ssi onEnpl oyee Class

We begin by declaring clagammissionEmployee (Fig. 14.1). Line 4 begins the class
declaration and indicates that classnmissionEmployee extendg(i.e., inherits from) class
Object (from packaggava.lang). Java programmers use inheritance to createedldssm
existing classes. In fact, every class in Javagjgb@bject) extends an existing class. Because
classCommissionEmployee extends clasSbject , classCommissionEmployee inherits the

methods of clasebject classObject does not have any fields. In fact, every Javasaliaectly

Introduction to Scientific Programming Using Java Page 105

or indirectly inheritObject 's methods. If a class does not specify that #mrds$ another class,

the new class implicitly extendsject . For this reason, programmers typically do nolude

"extends Object " in their codewe do so in this example for demi@igin purposes.
1 //Fig. 14.1 CommissionEmployee.java

2 /I CommissionEmployee class represents a commission employee.

3

4 public class CommissionEmployee extends Object

5 {

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9 private double grossSales; /I gross weekly sales

10 private double commissionRate; /I commission percentage

11

12 /I five-argument constructor

13 public CommissionEmployee(String first, String last, Str ing ssn,
14 double sales, double rate)

15 {

16 /I implicit call to Object constructor occurs here

17 firstName = first;
18 lastName = last;
19 socialSecurityNumber = ssn;

20 setGrossSales(sales); /I validate and store gross sales

21 setCommissionRate(rate); /I validate and store commission rate
22 } /I end five-argument CommissionEmployee constructor

23

24 /I set first name

25 public void setFirstName(String first)

26 {

27 firstName = first;
28 } /I end method setFirstName

29

30 /I return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } /I end method getFirstName

35

36 /I set last name

37 public void setLastName(String last)
38 {

39 lastName = last;
40 } /I end method setLastName

41

42 / return last name

43 public String getLastName()

44 {

45 return lastName;

46 } /I end method getLastName

47

48 /I set social security number

49 public void setSocialSecurityNumber(String ssn)
50 {

Introduction to Scientific Programming Using Java

Page 106

51 socialSecurityNumber = ssn; /I should validate
52 } /I end method setSocialSecurityNumber

53

54 /I return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } /I end method getSocialSecurityNumber

59

60 /I set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0)? 0.0 :sales;
64 } /I end method setGrossSales

65

66 /I return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } /I end method getGrossSales

71

72 /I set commission rate

73 public void setCommissionRate(double rate)

74 |

75 commissionRate = (rate > 0.0 &&rate < 1.0)?rate: 0.0 ;
76 '} /I end method setCommissionRate

77

78 /[return commission rate

79 public double getCommissionRate()

80 {

81 return commissionRate;

82 1} /I end method getCommissionRate

83

84 /I calculate earnings

85 public double earnings()

86 {

87 return commissionRate * grossSales;

88 } /I end method earnings

89

90 [l return String representation of CommissionEmploy ee object
91 public String toString()

92 {

93 return String.format("%sS: %S %s\n%s: %s\n%s: %.2f\n%s: %.2f" ,
94 "commission employee" , firstName, lastName,
95 "social security number" , SocialSecurityNumber,
96 "gross sales" , grossSales,

97 "commission rate" , commissionRate);

98 } /I end method toString
99 } /I end class CommissionEmployee

Thepublic services of classommissionEmployee include a constructor (lines 13-22) and
methodsearnings (lines 85-88) anebstring (lines 9198). Lines 25-82 declarevlic get and
set methods for manipulating the class's instaac@bles (declared in lines 6-1f0$tName

lastName , socialSecurityNumber , grossSales andcommissionRate . Class

Introduction to Scientific Programming Using Java Page 107

CommissionEmployee declares each of its instance variablegriaste , so objects of other
classes cannot directly access these variablesafrecinstance variables gsvate and
providing get and set methods to manipulate andata the instance variables helps enforce
good software engineering. Metha@sGrossSales ~ andsetCommissionRate , for example,
validate their arguments before assigning the wloénstance variablegossSales and

commissionRate , respectively.

Constructors are not inherited, so classimissionEmployee does not inherit clas3bject 's
constructor. However, clasammissionEmployee 's constructor calls clas®ject 's constructor
implicitly. In fact, the first task of any subclassnstructor is to call its direct superclass's
constructor, either explicitly or implicitly (if noonstructor call is specified), to ensure that the
instance variables inherited from the superclassmatialized properly. The syntax for calling a
superclass constructor explicitly is discussed latein the test. If the code does not include an
explicit call to the superclass constructor, Janglicitly calls the superclass's default or no-
argument constructor. The comment in line 16 of Ef1 indicates where the implicit call to
the superclassbject 's default constructor is made (the programmer dogsvrite the code for
this call).Object 's default (empty) constructor does nothing. Nb&d even if a class does not
have constructors, the default constructor thattmpiler implicitly declares for the class will
call the superclass's default or no-argument cocistr.

After the implicit call toObject 's constructor occurs, lines 17-21GommissionEmployee 'S
constructor assign values to the class's instaacables. Note that we do not validate the values
of argumentsirst ,last andssn before assigning them to the corresponding instanc
variables. While validating data is good softwangireering, including extensive validation in
this class could add a potentially large amourdoafe that would obscure the focus of this
example. We certainly could validate the first #a&t namesperhaps by ensuring that they are of
a reasonable length. Similarly, a social secunitynher could be validated to ensure that it

contains nine digits, with or without dashes (eLgB;45-6789 0Or 123456789).

Methodearnings (lines 8588) calculates@mmissionEmployee 's earnings. Line 87 multiplies

thecommissionRate by thegrossSales and returns the result.

Introduction to Scientific Programming Using Java Page 108

Methodtostring (lines 91-98) is special it is one of the methtidg every class inherits

directly or indirectly from clasebject , which is the root of the Java class hierarchytide
toString returns atring representing an object. This method is called it by a program
whenever an object must be converted to a stripgesentation, such as when an object is output
by printf orstring methodformat using thexs format specifier. ClasSbject 'StoString

method returns atring that includes the name of the object's class. primarily a placeholder
that can be overridden by a subclass to specifpanopriate string representation of the data in
a subclass object. Methagbtring of classCommissionEmployee overrides (redefines) class
Object 'stoString method. When invoked,ommissionEmployee 'StoString method uses

String methodformat to return astring containing information about the

CommissionEmployee . We use format specifies.2f to format both thgrossSales and the
commissionRate ~ with two digits of precision to the right of the@mal point. To override a
superclass method, a subclass must declare a msitinthe same signature (method name,
number of parameters and parameter types) as pleectass methambject 'stoString method

takes no parameters, SommissionEmployee declaresoString with no parameters.

It is a syntax error to override a method with aen@stricted access modifigravlic method

of the superclass cannot becomgozected Orprivate method in the subclasspetected

method of the superclass cannot becom&ae method in the subclass. Doing so would
break the "is-a" relationship in which it is reqdrthat all subclass objects be able to respond to
method calls that are madepimlic methods declared in the superclass.gitgic method

could be overridden aspeotected Orprivate method, the subclass objects would not be able
to respond to the same method calls as superdigesst® Once a method is declapedic ina

superclass, the method remapaslic for all that class's direct and indirect subclasse

Figure 14.2 tests clas®mmissionEmployee . Lines 910 instantiate @mmissionEmployee
object and invok€ommissionEmployee 's constructor (lines 13-22 of Fig. 14.1) to ifiga it
with "sue" as the first namejones" as the last nameg22-22-2222" as the social security
number, 10000 as the gross sales amountoands the commission rate. Lines 1524 use
CommissionEmployee 's get methods to retrieve the object's instandabla values for output.

Lines 26-27 invoke the object's methedssrossSales andsetCommissionRate to change the

Introduction to Scientific Programming Using Java Page 109

values of instance variablg®ssSales andcommissionRate . Lines 29-30 output the string
representation of the updatedmmissionEmployee . Note that when an object is output using the
%s format specifier, the objectsstring method is invoked implicitly to obtain the objsct’

string representation.

1 /I Fig. 14.2: CommissionEmployeeTest.java

2 /I Testing class CommissionEmployee.

3

4 public class CommissionEmployeeTest

5 {

6 public static void main(String argsl])

7 A

8 /l instantiate CommissionEmployee object

9 CommissionEmployee employee = new CommissionEmployee(

10 "Sue" , "Jones" , "222-22-2222" , 10000, .06);

11

12 /I get commission employee data

13 System.out.printin(

14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n" , "First name is" ,

16 employee.getFirstName());

17 System.out.printf("%s %s\n" , "Last name is" ,

18 employee.getLastName());

19 System.out.printf("%s %s\n" , "Social security number is" ,
20 employee.getSocialSecurityNumber());

21 System.out.printf("%s %.2f\n" , "Gross sales is" ,

22 employee.getGrossSales());

23 System.out.printf("%s %.2f\n" , "Commission rate is" ,
24 employee.getCommissionRate());

25

26 employee.setGrossSales(500); /I set gross sales

27 employee.setCommissionRate(.1); [/l set commission rate

28

29 System.out. printf("\n%s:\n\n%s\n" ,

30 "Updated employee information obtained by toString" , employee);

31 } /I end main
32 } [/l end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales is 10000.00

Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00

commission rate: 0.10

Introduction to Scientific Programming Using Java Page 110

CommissionEmployeeBasePlusCommissionEmployee Inh&mnce Hierarchy Using private
Instance Variables

We now reexamine our hierarchy once more, this tisieg the best software engineering
practices. ClassommissionEmployee3 (Fig. 14.3) declares instance varialflesName
lastName , socialSecurityNumber , grossSales andcommissionRate asprivate (lines 6-10)
and providegublic methodssetFirstName , getFirstName , setLastName , getLastName ,
setSocialSecurityNumber , getSocialSecurityNumber , setGrossSales |, getGrossSales
setCommissionRate , getCommissionRate , earnings andtoString for manipulating these
values. Note that methodsrnings (lines 8588) andbstring (lines 91-98) use the class's get
methods to obtain the values of its instance véesalf we decide to change the instance
variable names, the earnings and toString dectensitwvill not require modificationonly the
bodies of the get and set methods that directlyipudate the instance variables will need to
change. Note that these changes occur solely witleiisuperclassno changes to the subclass are
needed. Localizing the effects of changes like e good software engineering practice.
Subclas®asePlusCommissionEmployee4 (Fig. 14.4) inherit€ommissionEmployee3 'S non-

private methods and can access pheate superclass members via those methods.

1 //Fig. 14.3: CommissionEmployee3.java

2 /I CommissionEmployee3 class represents a commissio n employee.
3

4 public class CommissionEmployee3

5 {

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9 private double grossSales; /I gross weekly sales

10 private double commissionRate; /I commission percentage

11

12 /I five-argument constructor

13 public CommissionEmployee3(String first, String last, St ring ssn,
14 double sales, double rate)

15 {

16 /l implicit call to Object constructor occurs here

17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); /Il validate and store gross sales

21 setCommissionRate(rate); /Il validate and store commission rate
22 } /I end five-argument CommissionEmployee3 constructo r

23

Introduction to Scientific Programming Using Java Page 111

24 /I set first name

25 public void setFirstName(String first)
26 {

27 firstName = first;

28 } /I end method setFirstName

29

30 [l return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } /I end method getFirstName

35

36 /I set last name

37 public void setLastName(String last)
38

39 lastName = last;
40 } /I end method setLastName

41

42 /I return last name

43 public String getLastName()
44 |

45 return lastName;

46 } /I end method getLastName
47

48 /I set social security number

49 public void setSocialSecurityNumber(String ssn)
50 {

51 socialSecurityNumber = ssn; /I should validate
52 } /I end method setSocialSecurityNumber

53

54 /I return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } /I end method getSocialSecurityNumber

59

60 /I set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0)? 0.0 :sales;
64 } /I end method setGrossSales

65

66 /l return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } /I end method getGrossSales

71

72 /I set commission rate

73 public void setCommissionRate(double rate)
74 |

75 commissionRate = (rate > 0.0 &&rate < 1.0) ?rate:
76 '} /I end method setCommissionRate

77

78 /[return commission rate

79 public double getCommissionRate()

80 {

0.0 ;

Introduction to Scientific Programming Using Java

Page 112

81 return commissionRate;
82 1} /I end method getCommissionRate

83

84 /I calculate earnings

85 public double earnings()

86 {

87 return getCommissionRate() * getGrossSales();

88 } /I end method earnings

89

90 /I return String representation of CommissionEmploy ee3 object
91 public String toString()

92 {

93 return String.format("%S: %S %s\n%s: %s\n%s: %.2f\n%s: %.2f" ,
94 "commission employee" , getFirstName(), getLastName(),

95 "social security number" , getSocialSecurityNumber(),

96 "gross sales" , getGrossSales(),

97 "commission rate" , getCommissionRate());

98 } /I end method toString
99 } /I end class CommissionEmployee3

1 //Fig. 14.4: BasePlusCommissionEmployee4.java

2 /IBasePlusCommissionEmployee4 class inherits from C ommissionEmployee3 and
3/l accesses CommissionEmployee3's private data via CommissionEmployee3's
4/l public methods.

5

6 public class BasePlusCommissionEmployee4 extends CommissionEmployee3
74

8 private double baseSalary; /I base salary per week

9

10 /I six-argument constructor

11 public BasePlusCommissionEmployee4(String first, String last,
12 String ssn, double sales, double rate, double salary)

13 {

14 super (first, last, ssn, sales, rate);

15 setBaseSalary(salary); /I validate and store base salary

16 } /I end six-argument BasePlusCommissionEmployee4 con structor

17

18 /I set base salary

19 public void setBaseSalary(double salary)

20 {

21 baseSalary = (salary < 0.0)? 0.0 :salary;

22} /I end method setBaseSalary

23

24 /I return base salary

25 public double getBaseSalary()

26 {

27 return baseSalary;

28 } /I end method getBaseSalary

29

30 /I calculate earnings

31 public double earnings()

32 {

33 return getBaseSalary() + super .earnings();

34 } /I end method earnings

35

36 /I return String representation of BasePlusCommissi onEmployee4
37 public String toString()

Introduction to Scientific Programming Using Java

Page 113

38 {

39 return String.format("%s %s\n%s: %.2f" , "base-salaried" ,
40 super .toString(), "base salary" , getBaseSalary());

41 '} /I end method toString

42 } /I end class BasePlusCommissionEmployee4

ClassBasePlusCommissionEmployee4 (Fig. 14.3) has several changes to its method
implementations that distinguish it from classePlusCommissionEmployee3 (Fig. 14.3).
Methodsearnings (Fig. 14.2, lines 31-34) andstring (lines 37-41) each invoke method
getBaseSalary to obtain the base salary value, rather than aotgsaseSalary directly. If we
decide to rename instance variatdeeSalary , only the bodies of metha@tBaseSalary and

getBaseSalary will need to change.

ClassBasePlusCommissionEmployee4 'Searnings method (Fig. 14.2, lines 31-34) overrides
classCommissionEmployee3 'searnings method (Fig.14.4 lines 85-88) to calculate thenieays
of a base-salaried commission employee. The nesioreobtains the portion of the employee's
earnings based on commission alone by cattimgmissionEmployee3 'Searnings method with

the expressionuper.earnings() (Fig. 14.3, line 33)BasePlusCommissionEmployee4 'S

earnings method then adds the base salary to this valoaltolate the total earnings of the
employee. Note the syntax used to invoke an owdgrnidsuperclass method from a subclassplace
the keywordsuper and a dot.() separator before the superclass method namenmiéitsod
invocation is a good software-engineering practiecall from Software Engineering
Observation 8.5 that if a method performs all ane®f the actions needed by another method,
call that method rather than duplicate its codehByingBasePlusCommissionEmployee4 'S

earnings method invokecommissionEmployee3 'Searnings method to calculate part of a
BasePlusCommissionEmployee4 object's earnings, we avoid duplicating the caur@duce

code-maintenance problems.

Introduction to Scientific Programming Using Java Page 114

General Learning Objectives for Week15: Polymorphsm

Specific Objectives:

Understand the concepts of polymorphism using ¢lessirchy
Know how to create abstract classes

Write abstract methods

Write simple programs implementing polymorphism

o o T p

Introduction to Scientific Programming Using Java Page 115

Polymorphism

We now continue our study of object-oriented pragrang by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enabke$o "program in the
general” rather than "program in the specific.péaticular, polymorphism enables us to write
programs that process objects that share the sgpeectass in a class hierarchy as if they are all

objects of the superclass.

Consider the following example of polymorphism. Boage we create a program that simulates
the movement of several types of animals for adgichl study. Classessh , Frog andBird
represent the three types of animals under invagsig. Imagine that each of these classes
extends superclagsimal , which contains a methagbve and maintains an animal's current
location as x-y coordinates. Each subclass implésmaethodnove. Our program maintains an
array of references to objects of the varignigal subclasses. To simulate the animals'
movements, the program sends each object the sassage once per secondnamelye.
However, each specific type afimal responds to move message in a unique wakiah might
swim three feet, arog might jump five feet and Bird might fly ten feet. The program issues
the same message (i.agve) to each animal object generically, but each dk§aows how to
modify its x-y coordinates appropriately for itesfic type of movement. Relying on each
object to know how to "do the right thing"” (i.eq @hat is appropriate for that type of object) in
response to the same method call is the key condgmlymorphism. The same message (in this

casemove) sent to a variety of objects has "many formstesultshence the term polymorphism.

With polymorphism, we can design and implementesystthat are easily extensiblenew classes
can be added with little or no modification to tieneral portions of the program, as long as the
new classes are part of the inheritance hieratttythe program processes generically. The only
parts of a program that must be altered to accomteatkw classes are those that require direct
knowledge of the new classes that the programnus &dthe hierarchy. For example, if we
extend clasanimal to create classortoise (which might respond tomove message by

crawling one inch), we need to write only thetoise class and the part of the simulation that

Introduction to Scientific Programming Using Java Page 116

instantiates dortoise object. The portions of the simulation that preceachanimal

generically can remain the same.

This chapter has several key parts. First, we dscommon examples of polymorphism. We
then provide a live-code example demonstratingmolyphic behavior. As you will soon see,
you will use superclass references to manipulatie aperclass objects and subclass objects

polymorphically.

We then present a case study that revisits theamplhierarchy ofection 9.4.5We develop a
simple payroll application that polymorphically calates the weekly pay of several different
types of employees using each employesisngs method. Though the earnings of each type
of employee are calculated in a specific way, pagphism allows us to process the employees
"in the general.” In the case study, we enlargéhtbearchy to include two new
classesalariedEmployee (for people paid a fixed weekly salary) amglirlyEmployee (for
people paid an hourly salary and so-called time-ahalf for overtime). We declare a common
set of functionality for all the classes in the apsl hierarchy in a so-called abstract class,
Employee , from which classeSalariedEmployee , HourlyEmployee ~andCommissionEmployee
inherit directly and clasBasePlusCommissionEmployee4 inherits indirectly. As you will soon
see, when we invoke each employeetsings method off a superclagsployee reference,

the correct earnings calculation is performed dugatva's polymorphic capabilities.

Occasionally, when performing polymorphic procegsime need to program "in the specific.”
OurEmployee case study demonstrates that a program can detethe type of an object at
execution time and act on that object accordinigighe case study, we use these capabilities to
determine whether a particular employee objectBssaPlusCommissionEmployee . If so, we

increase that employee's base salary by 10%.

The chapter continues with an introduction to Jaterfaces. An interface describes a set of
methods that can be called on an object, but doegrovide concrete implementations for the
methods. Programmers can declare classegtip&ment(i.e., provide concrete
implementations for the methods of) one or morerfates. Each interface method must be

declared in all the classes that implement thefate. Once a class implements an interface, all

Introduction to Scientific Programming Using Java Page 117

objects of that class have an is-a relationship Wié interface type, and all objects of the class
are guaranteed to provide the functionality desttiby the interface. This is true of all

subclasses of that class as well.

Interfaces are particularly useful for assigninghomon functionality to possibly unrelated
classes. This allows objects of unrelated classbg fprocessed polymorphicallyobjects of
classes that implement the same interface canmdgpahe same method calls. To demonstrate
creating and using interfaces, we modify our pdypplication to create a general accounts
payable application that can calculate paymentdalueompany employees and invoice
amounts to be billed for purchased goods. As ydusee, interfaces enable polymorphic
capabilities similar to those possible with inhemite.

Polymorphism Examples

We now consider several additional examples ofmpolphism. If clas®ectangle is derived
from clasQuadrilateral ~ , then aRectangle o0bject is a more specific version of a

Quadrilateral object. Any operation (e.g., calculating the petien or the area) that can be
performed on &uadrilateral object can also be performed oReatangle o0bject. These
operations can also be performed on otheidrilateral S, such asquare s, Parallelogram S
andtrapezoid S. The polymorphism occurs when a program invokeetnod through a
superclass variableat execution time, the corrgatlass version of the method is called, based

on the type of the reference stored in the supgsalariable.

As another example, suppose we design a video gahenanipulates objects of many different
types, including objects of class@srtian , Venusian , Plutonian , SpaceShip andLaserBeam .
Imagine that each class inherits from the comm@ealiass calledpaceObject , which

contains methodraw . Each subclass implements this method. A screerage program
maintains a collection (e.g.,SaaceObject array) of references to objects of the variouss#a.
To refresh the screen, the screen manager perilydseads each object the same
messagenamelyraw . However, each object responds in a unique wayekample, aartian
object might draw itself in red with the appropeiaumber of antennae. #baceShip object

might draw itself as a bright silver flying saucArLaserBeam object might draw itself as a

Introduction to Scientific Programming Using Java Page 118

bright red beam across the screen. Again, the sa@ssage (in this cas#aw) sent to a variety

of objects has "many forms" of results.

A polymorphic screen manager might use polymorphisfacilitate adding new classes to a
system with minimal modifications to the systengde Suppose that we want to add

Mercurian objects to our video game. To do so, we must kudthssvercurian that extends
SpaceObject and provides its owdraw method implementation. When objects of class
Mercurian appear in thepaceObject collection, the screen manager code invokes method
draw , exactly as it does for every other object in¢dbkection, regardless of its type. So the new
Mercurian objects simply "plug right in" without any modiétion of the screen manager code
by the programmer. Thus, without modifying the eystother than to build new classes and
modify the code that creates new objects), progrararman use polymorphism to include

additional types that were not envisioned whersistem was created.

With polymorphism, the same method name and sigaaian be used to cause different actions
to occur, depending on the type of object on whithmethod is invoked. This gives the

programmer tremendous expressive capability.

Polymorphism enables programmers to deal in getiesadnd let the execution-time
environment handle the specifics. Programmers oamtand objects to behave in manners
appropriate to those objects, without knowing tpes of the objects (as long as the objects
belong to the same inheritance hierarchy).

Demonstrating Polymorphic Behavior

In week fourteen created a commission employee tl@sarchy, in which class
BasePlusCommissionEmployee inherited from classommissionEmployee . The examples in

that section manipulatetbmmissionEmployee andBasePlusCommissionEmployee 0bjects by
using references to them to invoke their methods.aikhed superclass references at superclass
objects and subclass references at subclass objbetse assignments are natural and
straightforwardsuperclass references are intermleefér to superclass objects, and subclass
references are intended to refer to subclass abjecwever, as you will soon see, other
assignments are possible.

Introduction to Scientific Programming Using Java Page 119

In the next example, we aim a superclass referanaesubclass object. We then show how
invoking a method on a subclass object via a slgesceference invokes the subclass
functionalitythe type of the actual referenced objeot the type of the reference, determines
which method is called. This example demonstrdteskéy concept that an object of a subclass
can be treated as an object of its superclass.efables various interesting manipulations. A
program can create an array of superclass refes¢hatrefer to objects of many subclass types.
This is allowed because each subclass objectabjaat of its superclass. For instance, we can
assign the reference oBasePlusCommissionEmployee Object to a superclass
CommissionEmployee Vvariable becauseBasePlusCommissionEmployee IS a

CommissionEmployee we can treat 8asePlusCommissionEmployee as a

CommissionEmployee

As you will learn later in the chapter, we canmeat a superclass object as a subclass object
because a superclass object is not an object obfate/subclasses. For example, we cannot
assign the reference ofcammissionEmployee object to a subclass
BasePlusCommissionEmployee variable because@mmissionEmployee IS not a
BasePlusCommissionEmployee & CommissionEmployee does not have lzaseSalary instance
variable and does not have metheglBaseSalary andgetBaseSalary . The is-a relationship

applies only from a subclass to its direct (andragad) superclasses, and not vice versa.

It turns out that the Java compiler does allowassignment of a superclass reference to a
subclass variable if we explicitly cast the supesslireference to the subclass type. Why would
we ever want to perform such an assignment? A slgssrreference can be used to invoke only
the methods declared in the superclass attempiimyoke subclass-only methods through a
superclass reference results in compilation ertbesprogram needs to perform a subclass-
specific operation on a subclass object referebgesi superclass variable, the program must
first cast the superclass reference to a subatdseence through a technique known as
downcasting This enables the program to invoke subclass ndsttiwat are not in the
superclass. We will show you a concrete examptiaicasting later in the text.

1 //Fig. 15.1: PolymorphismTest.java

2 /I Assigning superclass and subclass references to superclass and
3 /I subclass variables.

Introduction to Scientific Programming Using Java Page 120

public class PolymorphismTest

public static void main(String argsl])

©O©oo~NOOON
—~
—~

10

11

12

13

14

15

16

17

18 /I invoke toString on superclass object using super class variable
19 System.out.printf("%s %s:\n\n%s\n\n" ,

20 "Call CommissionEmployee3's toString with superclas s reference
21 "to superclass object" , commissionEmployee.toString());

22

23 /I invoke toString on subclass object using subclas s variable

24 System.out.printf("%s %s:\n\n%s\n\n" ,

25 "Call BasePlusCommissionEmployee4's toString with s ubclass"
26 "reference to subclass object” ,

27 basePlusCommissionEmployeetoString() ~);

28

29 /I invoke toString on subclass object using supercl ass variable

30 Com

31 bas

32 System.out.printf("%s %s:\n\n%s\n"

33 "Call BasePlusCommissionEmployee4's toString with s uperclass"
3 “reference to subclass object” , commissionEmployee2.toString()
);

3 } /I end main

36 } // end class PolymorphismTest

Introduction to Scientific Programming Using Java Page 121

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

In Fig. 15.1, lines 10-11 createcammissionEmployee3 oObject and assign its reference to a
CommissionEmployee3 variable. Lines 14-16 createBasePlusCommissionEmployee4 object
and assign its reference t@asePlusCommissionEmployee4 variable. These assignments are
naturalfor example, @ommissionEmployee3 variable's primary purpose is to hold a reference
aCommissionEmployee3 object. Lines 19-21 use referermoemmissionEmployee to invoke
toString explicitly. Becaus@eommissionEmployee refers to aommissionEmployee3 object,
superclas€ommissionEmployee3 's version ofoString is called. Similarly, lines 24-27 use
basePlusCommissionEmployee to invoketoString explicitly on the
BasePlusCommissionEmployee4 object. This invokes subclass

BasePlusCommissionEmployee4 's version ofoString

Lines 30-31 then assign the reference to subclgsstbasePlusCommissionEmployee t0 a
superclas€ommissionEmployee3 variable, which lines 32-34 use to invoke methusiring

A superclass variable that contains a refereneestabclass object and is used to call a method
actually calls the subclass version of the methtihce commissionEmployee2.toString() in

line 34 actually calls clasgsePlusCommissionEmployee4 'stoString method. The Java
compiler allows this "crossover" because an olgéet subclass is an object of its superclass (but
not vice versa). When the compiler encounters daaetall made through a variable, the
compiler determines if the method can be calledhi®cking the variable's class type. If that
class contains the proper method declaration {@rits one), the compiler allows the call to be
compiled. At execution time, the type of the objectvhich the variable refers determines the

actual method to use.

Abstract Classes and Methods

When we think of a class type, we assume that progwill create objects of that type. In some
cases, however, it is useful to declare classewlorh the programmer never intends to

Introduction to Scientific Programming Using Java Page 122

instantiate objects. Such classes are called abstesses. Because they are used only as
superclasses in inheritance hierarchies, we refgradm asbstract superclassesThese classes
cannot be used to instantiate objects, becauses asll soon see, abstract classes are
incomplete. Subclasses must declare the "misseaepi” We demonstrate abstract classes in

later.

The purpose of an abstract class is primarily tivigle an appropriate superclass from which
other classes can inherit and thus share a come®grd In theshape hierarchy for example,
subclasses inherit the notion of what it meanstathapecommon attributes such msation
color andborderThickness , and behaviors such asw , move, resize andchangeColor
Classes that can be used to instantiate objectsaleelconcrete classesSuch classes provide
implementations of every method they declare (sofibe implementations can be inherited).
For example, we could derive concrete classe& , Square andtriangle from abstract
superclas3wobDimensionalShape . Similarly, we could derive concrete clasSesere , Cube
andTetrahedron from abstract superclassiReeDimensionalShape . Abstract superclasses are
too general to create real objectsthey specify algt is common among subclasses. We need
to be more specific before we can create objecisekample, if you send thieaw message to
abstract classwoDimensionalShape , it knows that two-dimensional shapes should laeveble,
but it does not know what specific shape to drawit sannot implement a reaédaw method.

Concrete classes provide the specifics that malea#onable to instantiate objects.

Not all inheritance hierarchies contain abstraassés. However, programmers often write client
code that uses only abstract superclass typesiteeeclient code's dependencies on a range of
specific subclass types. For example, a prograncanemrite a method with a parameter of an
abstract superclass type. When called, such a nhetobe passed an object of any concrete
class that directly or indirectly extends the sufzes specified as the parameter's type.

Abstract classes sometimes constitute severald@iehe hierarchy. For example, thieape
hierarchy of begins with abstract classpe. On the next level of the hierarchy are two more
abstract classe$woDimensionalShape andThreeDimensionalShape . The next level of the
hierarchy declares concrete classesrfamimensionalShapes (Circle , Square andTRiangle)

and forThreeDimensionalShapes ~ (Sphere , Cube andTeTRahedron).

Introduction to Scientific Programming Using Java Page 123

You make a class abstract by declaring it with kengdrabstract. An abstract class normally
contains one or mot@bstract methods An abstract method is one with keywatdtract in

its declaration, as in

public abstract void draw(); /I abstract method

Abstract methods do not provide implementationslass that contains any abstract methods
must be declared as an abstract class even ifldes contains concrete (non-abstract) methods.
Each concrete subclass of an abstract superckEssaist provide concrete implementations of
the superclass's abstract methods. Constructorsaind methods cannot be declared

abstract . Constructors are not inherited, soaastract constructor could never be
implemented. Similarly, subclasses cannot ovestate = methods, SO asbstract static

method could never be implemented.

Although we cannot instantiate objects of abstsagerclasses, you will soon see that we can
use abstract superclasses to declare variablesahdtold references to objects of any concrete
class derived from those abstract classes. Progsgoitslly use such variables to manipulate
subclass objects polymorphically. We also can bs&ract superclass names to inveigic

methods declared in those abstract superclasses.

Consider another application of polymorphism. Avdreg program needs to display many
shapes, including new shape types that the progeamiiii add to the system after writing the
drawing program. The drawing program might needisplay shapes, such aicles

TRiangles , Rectangles oOr others, that derive from abstract superctaape. The drawing
program usesShape variables to manage the objects that are display@draw any object in

this inheritance hierarchy, the drawing progranmsussuperclasshape variable containing a
reference to the subclass object to invoke thectbgaw method. This method is declared
abstract in superclasshape, so each concrete subclass must implement methedin a
manner specific to that shape. Each object irstlage inheritance hierarchy knows how to draw
itself. The drawing program does not have to waitrgut the type of each object or whether the

drawing program has ever encountered objects otype.

Introduction to Scientific Programming Using Java Page 124

Polymorphism is particularly effective for implentgry so-called layered software systems. In
operating systems, for example, each type of phydevice could operate quite differently from
the others. Even so, commands to read or writefdat@and to devices may have a certain
uniformity. For each device, the operating systa@sia piece of software called a device driver
to control all communication between the systemthaedievice. The write message sent to a
device-driver object needs to be interpreted spadiy in the context of that driver and how it
manipulates devices of a specific type. Howevex wvhite call itself really is no different from
the write to any other device in the system: Plmae number of bytes from memory onto that
device. An object-oriented operating system migtg an abstract superclass to provide an
"interface" appropriate for all device drivers. Tihéhrough inheritance from that abstract
superclass, subclasses are formed that all belmaiuary/. The device driver methods are
declared as abstract methods in the abstract dapgrd he implementations of these abstract
methods are provided in the subclasses that camedjp the specific types of device drivers.
New devices are always being developed, and ofteg after the operating system has been
released. When you buy a new device, it comes avithvice driver provided by the device
vendor. The device is immediately operational after connect it to your computer and install

the driver. This is another elegant example of polymorphism makes systems extensible.

Creating Abstract Superclass Enpl oyee

Classemployee (Fig. 15.4) provides methodsrnings andtoString , in addition to the get and
set methods that manipula&eployee 's instance variables. Ararnings method certainly
applies generically to all employees. But eachiegecalculation depends on the employee's
class. So we declasarnings asabstract in superclasEmployee because a default
implementation does not make sense for that metleoglis not enough information to
determine what amourtrings should return. Each subclass overrig@saings with an
appropriate implementation. To calculate an emmtsyearnings, the program assigns a
reference to the employee's object to a superelassyee variable, then invokes thearnings
method on that variable. We maintain an arragnafloyee variables, each of which holds a
reference to aBmployee object (of course, there cannotteployee objects becausanployee

is an abstract classbecause of inheritance, howaNebjects of all subclasses®fiployee may

nevertheless be thought ofesployee objects). The program iterates through the arraly a

Introduction to Scientific Programming Using Java Page 125

calls methodarnings for eachEmployee object. Java processes these method calls
polymorphically. Including:arnings as an abstract methoddmployee forces every direct
subclass oEmployee to overrideearnings in order to become a concrete class. This enddes
designer of the class hierarchy to demand that salotlass provide an appropriate pay

calculation.

MethodtoString in classEmployee returns atring containing the first name, last name and
social security number of the employee. As we g8k, each subclass®fiployee overrides
methodtoString to create a string representation of an objethaif class that contains the
employee's type (e.gsalaried employee:") followed by the rest of the employee's

information.

The diagram in Fig. 15.3 shows each of the fives#a in the hierarchy down the left side and
methodsearnings andtoString across the top. For each class, the diagram sti@ndesired
results of each method. [Note: We do not list sclpssEmployee 's get and set methods because
they are not overridden in any of the subclassésegathese methods is inherited and used "as

is" by each of the subclasses.]

1 /I Fig. 15.4: Employee.java

2 /I Employee abstract superclass.

3

4 public abstract class Employee

5 {

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9

10 /I three-argument constructor

11 public Employee(String first, String last, String ssn)
12 {

13 firstName = first;

14 lastName = last;

15 socialSecurityNumber = ssn;

16 } /I end three-argument Employee constructor
17

18 /I set first name

19 public void setFirstName(String first)
20 {

21 firstName = first;

22} /I end method setFirstName

23

24 /I return first name

25 public String getFirstName()

Introduction to Scientific Programming Using Java Page 126

26 {

27 return firstName;

28 } /I end method getFirstName

29

30 /I set last name

31 public void setLastName(String last)

32 {

33 lastName = last;

34 } /I end method setLastName

35

36 [l return last name

37 public String getLastName()

38 {

39 return lastName;

40 } /I end method getLastName

41

42 /I set social security number

43 public void setSocialSecurityNumber(String ssn)

44

45 socialSecurityNumber = ssn; /I should validate
46 } /I end method setSocialSecurityNumber

47

48 /I return social security number

49 public String getSocialSecurityNumber()

50 {

51 return socialSecurityNumber;

52 } /I end method getSocialSecurityNumber

53

54 /I return String representation of Employee object

55 public String toString()

56 {

57 return String.format("%s %s\nsocial security number: %s" ,
58 getFirstName(), getLastName(), getSoci alSecurityNumber());
5 } /I end method toString

60

61 /I abstract method overridden by subclasses

62 public abstract double earnings(); /I no implementation here

63 } // end abstract class Employee

Why did we decide to declasarnings as ambstract method? It simply does not make sense
to provide an implementation of this method in sEaployee . We cannot calculate the
earnings for a generamployee we first must know the specifiamployee type to determine the
appropriate earnings calculation. By declaring thethodabstract , we indicate that each
concrete subclass must provide an appropesaténgs implementation and that a program will
be able to use superclazsployee variables to invoke methaghrmings polymorphically for

any type ofEmployee .

Introduction to Scientific Programming Using Java Page 127

Creating Concrete Subclass sal ari edEnpl oyee

ClasssalariedEmployee (Fig. 15.5) extends clagsployee (line 4) and overridesarnings

(lines 29-32), which makeslariedEmployee a concrete class. The class includes a constructor
(lines 9-14) that takes a first name, a last nars®cial security number and a weekly salary as
arguments; a set method to assign a new non-negalue to instance variableeklySalary

(lines 17-20); a get method to retweeklySalary 's value (lines 23-26); a metheanings

(lines 29-32) to calculatesalariedEmployee 's earnings; and a methadtring (lines 35-39),
which returns &tring including the employee's type, namebglaried employee:"

followed by employee-specific information produdsdsuperclasEmployee 'StoString

method andbalariedEmployee 'SgetWeeklySalary method. ClasSalariedEmployee 'S
constructor passes the first name, last name anal security number to themployee

constructor (line 12) to initialize theivate instance variables not inherited from the
superclass. Methoshrnings overrides abstract methedrings in Employee to provide a
concrete implementation that returns Ha@riedEmployee 's weekly salary. If we do not
implementearnings , classSalariedEmployee ~ must be declaregbstract otherwise, a
compilation error occurs (and, of course, we WaitriedEmployee here to be a concrete
class).

/I Fig. 10.5: SalariedEmployee.java
/I SalariedEmployee class extends Employee.

public class SalariedEmployee extends Employee
private double weeklySalary;

/I four-argument constructor

OCoO~NOOOUTA,WNPE
—~

public SalariedEmployee(String first, String last, Strin g ssh,
10 double salary)
11 {
12 super (first, last, ssn); /I pass to Employee constructor
13 setWeeklySalary(salary); /l validate and store salary
14 } /I end four-argument SalariedEmployee constructor
15
16 Il set salary
17 public void setWeeklySalary(double salary)
18 {
19 weeklySalary = salary < 0.0 ? 0.0 :salary;
20 } /I end method setWeeklySalary
21
22 Il return salary
23 public double getWeeklySalary()

Introduction to Scientific Programming Using Java Page 128

24 {

25 return weeklySalary;

26} /I end method getWeeklySalary

27

28 /I calculate earnings; override abstract method ear nings in Employee
29 public double earnings()

30 {

31 return getWeeklySalary();

32 } /I end method earnings

33

34 /I return String representation of SalariedEmployee object

35 public String toString()

36 {

37 return String.format("salaried employee: %s\n%s: $%,.2f" ,
38 super .toString(), "weekly salary" , getWeeklySalary());

39 1} /I end method toString
40 } // end class SalariedEmployee

Methodtostring (lines 35-39) of clasSalariedEmployee overridesEmployee method

toString . If classSalariedEmployee did not overrideoString , SalariedEmployee would

have inherited thEmployee version oftoString . In that caseSalariedEmployee 'StoString

method would simply return the employee's full naand social security number, which does
not adequately represensaariedEmployee . To produce a complete string representation of a
SalariedEmployee , the subclasstsstring method return$alaried employee:" followed

by the superclasamployee -specific information (i.e., first name, last naarel social security
number) obtained by invoking the superclagssing (line 38)this is a nice example of code
reuse. The string representation cfatriedEmployee also contains the employee's weekly

salary obtained by invoking the clasg8veeklySalary method.

Introduction to Scientific Programming Using Java Page 129

	Cover
	Table of Contents
	Week 1:
	Week 2:
	Week 3:
	Week 4:
	Week5:
	Week 7:
	Week 8:
	Week 9:
	Week 10:
	Week 11:
	WEEK 12
	Week 14:
	Week 15:
	Return to Table

