
Introduction to Scientific Programming Using Java Page 1

UNESCO-NIGERIA TECHNICAL & VOCATIONAL

EDUCATION REVITALISATION PROJECT-PHASE II

Version 1: December 2008

NATIONAL DIPLOMA IN

COMPUTER TECHNOLOGY

Introduction to Scientific Programming Using Java

COURSE CODE: COM121

THEORY BOOK

Introduction to Scientific Programming Using Java Page 2

Table of Contents

General Learning Objectives for Week 1: Java Programming Basics I .. 5

A Brief History of Java ... 6

Why Java? ... 6

Types of Java Programs .. 7

Introduction to Java Applications ... 7

Components of a Java Application Program ... 8

Compilation and Execution of Java Programs .. 12

General Learning Objectives for Week 2: Java Programming Basics II .. 14

Using Simple Graphical Interface ... 15

General Learning Objectives for Week 3: .. 17

Data Types in Java .. 18

Integers and Floating Points .. 19

Arithmetic Operators .. 20

Precedence of Arithmetic Operators ... 21

Reference (Non-primitive Data Types) ... 22

Variable Declaration ... 24

Using Graphical User Interfaces ... 28

General Learning Objectives for Week 4: Program Development Techniques .. 32

Program Development Stages ... 33

Problem solving .. 33

General Learning Objectives for Week5: Understand Insatiable Classes ... 39

Classes, Objects, Methods and Instance Variables ... 40

Insatiable Classes .. 41

Declaring a Class with a Method and Instantiating an Object of a Class ... 42

Class Circle ... 43

Class CircleTest .. 44

Methods and Constructors a Deeper Look .. 47

General Learning Objectives for Week7: Know the Use of Conditional Statements 49

Algorithms .. 50

Introduction to Scientific Programming Using Java Page 3

Pseudocode ... 50

Sequence Structure in Java ... 52

Selection Statements in Java .. 52

if Single-Selection Statement ... 53

if ...else Double-Selection Statement ... 53

Conditional Operator (?:) .. 54

Nested if ...else Statements ... 55

Dangling-else Problem ... 56

Blocks .. 57

General Learning Objectives for Week8: Know the Use of Selection Statements 59

The while Repetition Statement ... 60

Formulating Algorithms: Counter-Controlled Repetition ... 61

General Learning Objectives for Week9: Recursion ... 64

Recursive Concepts .. 65

Example Using Recursion: Factorials ... 66

General Learning Objectives for Week10: Characters and Strings ... 69

Fundamentals of Characters and Strings ... 70

What are Strings? .. 70

String Constructors .. 71

String Methods length , charAt and getChars .. 72

Comparing Strings ... 73

General Learning Objectives for Week11: Arrays... 79

Arrays .. 80

Declaring and Creating Arrays .. 81

Examples Using Arrays ... 83

Using an Array Initializer ... 84

Calculating a Value to Store in Each Array Element ... 86

Summing the Elements of an Array .. 87

General Learning Objectives for Week11: Event Driven Programs .. 88

Overview of Swing Components ... 89

Displaying Text and Images in a Window ... 90

Introduction to Scientific Programming Using Java Page 4

Labeling GUI Components .. 90

Text Fields and an Introduction to Event Handling with Nested Classes ... 92

Creating the GUI.. 96

Steps Required to Set Up Event Handling for a GUI Component ... 96

Using a Nested Class to Implement an Event Handler ... 97

Registering the Event Handler for Each Text Field.. 98

Details of Class TextFieldHandler 's actionPerformed Method .. 98

General Learning Objectives for Week14: Inheritance ... 100

Introduction to Inheritance ... 101

Superclasses and Subclasses .. 102

Relationship between Superclasses and Subclasses .. 104

Creating and Using a CommissionEmployee Class .. 105

CommissionEmployeeBasePlusCommissionEmployee Inheritance Hierarchy Using private Instance
Variables ... 111

General Learning Objectives for Week15: Polymorphism .. 115

Polymorphism ... 116

Polymorphism Examples ... 118

Demonstrating Polymorphic Behavior .. 119

Abstract Classes and Methods ... 122

Creating Abstract Superclass Employee .. 125

Creating Concrete Subclass SalariedEmployee ... 128

Introduction to Scientific Programming Using Java Page 5

General Learning Objectives for Week 1: Java Programming Basics I

Specific Learning Objectives:

a. Brief History of Java
b. Features of Java Programming Language
c. Identify basics of OOP (Object Oriented Programming)
d. Identify the types of Java Programs
e. Identify the components of a Java Program

Introduction to Scientific Programming Using Java Page 6

A Brief History of Java
Java is an Object Oriented Programming language developed by the team of James Gosling,

Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun Microsystems in 1991. This

language was initially called “Oak” but was renamed “Java” in 1995. The name Java came about

when some Suns people went for a cup of coffee and the name Java was suggested and it struck.

Java was developed out of the rich experiences of the professionals who came together to design

the programming language thus, it is an excellent programming language. It has similar syntax to

C/C++ programming languages but without it complexities. Java is an elegant programming

language.

Java was initially developed for programming intelligent electronic devices such as TVs, cell

phones, pagers, smart cards etc. Unfortunately the expectations of the Suns team in this area did

not develop as they envisaged. With the advent of the in the boom of the Internet and the World

Wide Web (WWW), the team changed their focus and Java was developed for developing web

based applications. It is currently being used to develop a variety of applications.

Why Java?
Thousands of programmers are embracing Java as the programming language of choice and

several hundred more will joining before the end of the decade. Why is this so? The basic

reasons for these are highlighted below:

a. Portability: Java is a highly portable programming language because it is not designed

for any specific hardware or software platform. Java programs once written are translated

into an intermediate form called bytecode. The bytecode is then translated by the Java

Virtual Machine (JVM) into the native object code of the processor that the program is

been executed on. JVMs exist for several computer platforms; hence the term Write Once

Run Anywhere (WORA).

b. Memory Management: Java is very conservative with memory; once a resource is no

longer referenced the garbage collector is called to reclaim the resource. This is one of

the elegant features that distinguishes Java from C/C++ where the programmer has to

“manually” reclaim memory.

Introduction to Scientific Programming Using Java Page 7

c. Extensibility: The basic unit of Java programs is the class. Every program written in

Java is a class that specifies the attributes and behaviors of objects of that class. Java

APIs (Application Programmers Interface) contains a rich set reusable classes that is

made available to the programmers. These classes are grouped together as packages from

which the programmer can build new enhanced classes. One of the key terms of object

oriented programming is reuse.

d. Secure: Java is a very secure programming language. Java codes (applets) may not

access the memory on the local computer that they are downloaded upon. Thus it

provides a secure means of developing internet applications.

e. Simple: Java’s feature makes it a concise programming language that is easy to learn and

understand. It is a serious programming language that easily depicts the skill of the

programmer.

f. Robustness: Java is a strongly typed programming language and encourages the

development of error free applications.

Types of Java Programs
Java programs may be developed in three ways. They will be mentioned briefly here:

a. Java Applications: These are stand-alone applications such word processors, inventory

control systems etc.

b. Java Applets: These programs that are executed within a browser. They are executed on

the client computer.

c. Java Serverlets: These are server side programs that are executed within a browser.

In this course we will limit ourselves to only the first two mentioned types of Java programs –

applications and applets.

Introduction to Java Applications
As earlier described Java applications are stand alone programs that can be executed to solve

specific problems. Before delving into the details of writing Java applications (and applets) we

will consider the concept on which the language is based upon being: Object Oriented

Programming (OOP).

Introduction to Scientific Programming Using Java Page 8

Object Oriented Programming is a methodology which has greatly revolutionized how programs

are designed and developed as the complexities involved in programming are increasing. The

following are the basic principles of OOP.

a. Encapsulation: Encapsulation is a methodology that binds together data and the codes

that it manipulates thus keeping it safe from external interference and misuse. An object

oriented program contains codes that may have private members that are directly

accessible to only the members of that program. Also it may have program codes

(methods) that will enable other programs to access these data is a uniform and controlled

fashion.

b. Polymorphism: Polymorphism is a concept whereby a particular “thing” may be

employed in many forms and the exact implementation is determined by the specific

nature of the situation (or problem). As an example, consider how a frog, lizard and a fish

move (“the interface”) from one place to another. A frog may leap ten centimeters, a

lizard in a single movement moves two centimeters and a shark may swim three meters in

a single movement. All these animals exhibit a common ability – movement – expressed

differently.

c. Inheritance: Inheritance is the process of building new classes based on existing classes.

The new class inherits the properties and attributes of the existing class. Object oriented

programs models real world concepts of inheritance. For example children inherit

attributes and behaviors from their parents. The attributes such as color of eyes,

complexion, facial features etc represent the fields in an java. Behaviors such as being a

good dancer, having a good sense of humor etc represent the methods. The child may

have other attributes and behaviors that differentiate them from the parents.

Components of a Java Application Program
Every Java application program comprises of a class declaration header, fields (instance

variables – which is optional), the main method and several other methods as required for

solving the problem. The methods and fields are members of the class. In order to explore these

components let us write our first Java program.

Introduction to Scientific Programming Using Java Page 9

/*
 * HelloWorld.java
 * Displays Hello world!!! to the output window
 *
 */

public class HelloWorld // class definition header
{

 public static void main(String[] args)
 {
 System.out.println(“Hello World!!! “); // print text

 } // end method main

} // end class HelloWorld

Listing 1.0 HelloWorld.java

The above program is a simple yet complete program containing the basic features of all Java

application programs. We will consider each of these features and explain them accordingly.

The first few lines of the program are comments.

/*
 * HelloWorld.java
 * Displays Hello world!!! to the output window
 *
 */

The comments are enclosed between the /* */ symbols.

Comments are used for documenting a program, that is, for passing across vital information

concerning the program – such as the logic being applied, name of the program and any other

relevant information etc. Comments are not executed by the computer.

Comments may also be created by using the // symbols either at the beginning of a line:

// This is a comment

Or on the same line after with an executable statement. To do this the comment must be written

after the executable statement and not before else the program statement will be ignored by the

computer:

System.out.println(“Hello World!!! “); // in-line comment.

Introduction to Scientific Programming Using Java Page 10

This type of comment is termed as an in-line comment.

The rest of the program is the class declaration, starting with the class definition header:

public class HelloWorld, followed by a pair of opening and closing curly brackets.
{

}

The class definition header class definition header starts with the access modifier public

followed by the keyword class then the name of the class HelloWorld . The access modifier tells

the Java compiler that the class can be accessed outside the program file that it is declared in.

The keyword class tells Java that we want to define a class using the name HelloWorld.

Note: The file containing this class must be saved using the name HelloWorld.java. The name of

the file and the class name must be the same both in capitalization and sequence. Java is very

case sensitive thus HelloWorld is different from helloworld and also different from

HELLOWORLD.

The next part of the program is the declaration of the main method. Methods are used for

carrying out the desired tasks in a Java program, they are akin to functions used in C/C++

programming languages. The listing:

public static void main(String[] args)
{

}

is the main method definition header. It starts with the access modifier public, followed by the

keyword static which implies that the method main() may be called before an object of the class

has been created. The keyword void implies that the method will not return any value on

completion of its task. These keywords public, static, and void should always be placed in the

sequenced shown.

Any information that you need to pass to a method is received by variables specified within the

set of parentheses that follow the name of the method. These variables are called parameters. If

no parameters are required for a given method, you still need to include the empty parentheses.

In main() there is only one parameter, String[] args, which declares a parameter named args.

Introduction to Scientific Programming Using Java Page 11

This is an array of objects of type String. (Arrays are collections of similar objects.) Objects of

type String store sequences of characters. In this case, args receives any command-line

arguments present when the program is executed. Note that the parameters could have been

written as String args[]. This is perfectly correct.

The instructions (statements) enclosed within the curly braces will be executed once the main

method is run. The above program contains the instruction that tells Java to display the output

“Hello World!!!” followed by a carriage return. This instruction is:

System.out.println(“Hello World!!!”); //print te xt

This line outputs the string "Java drives the Web." followed by a new line on the screen.

Output is actually accomplished by the built-in println() method. In this case, println()

displays the string which is passed to it. As you will see, println() can be used to display

other types of information, too. The line begins with System.out. While too complicated to

explain in detail at this time, briefly, System is a predefined class that provides access to the

system, and out is the output stream that is connected to the console. Thus, System.out is an

object that encapsulates console output. The fact that Java uses an object to define console

output is further evidence of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently in

real-world Java programs and applets. Since most modern computing environments are

windowed and graphical in nature, console I/O is used mostly for simple utility programs and for

demonstration programs. Later you will learn other ways to generate output using Java, but for

now, we will continue to use the console I/O methods. Notice that the println() statement ends

with a semicolon. All statements in Java end with a semicolon. The reason that the other lines in

the program do not end in a semicolon is that they are not, technically, statements.

The first closing brace -}- in the program ends main(), and the last } ends the HelloWorld

class definition; it is a good practice to place a comment after the closing curly brace. The

opening and close brace are referred to as a block of code.

One last point: Java is case sensitive. Forgetting this can cause you serious problems. For

example, if you accidentally type Main instead of main, or PrintLn instead of println , the

Introduction to Scientific Programming Using Java Page 12

preceding program will be incorrect. Furthermore, although the Java compiler will compile

classes that do not contain a main() method, it has no way to execute them. So, if you had

mistyped main, the compiler would still compile your program. However, the Java interpreter

would report an error because it would be unable to find the main() method.

In the above program some lines where left blank, this was done in order to make the program

readable. Furthermore, tabs (indentation) were used to within the body of a class or methods as

appropriate to spate characters and symbols. The blank spaces, tabs, and newline characters are

referred to as white spaces.

Compilation and Execution of Java Programs
As earlier mentioned in this text we will create only two types of Java programs – applications

and applets. In the next few paragraphs the steps for editing, compiling and executing a Java

programs. The procedures for Java application and Java applets are basically the same. The major

difference is that Java applets are executed within a browser.

The basic steps for compiling and executing a Java program are:

a. Enter the source code using a text editor. He file must be saved using the file extension .java.

b. Use the Java compiler to convert the source code to its bytecode equivalent. The byte code

will be saved in a file having the same name as the program file with an extension .class. To

compile our HelloWorld.java program, type the following instructions at the Windows

command prompt (c:\>): javac HelloWorld.java

The bytecodes (.class file) will be created only if there are no compilation errors.

c. Finally use the Java interpreter to execute the application, to do this at the Windows command

prompt (c:\>) type: java HelloWorld. (You need not type the .class extension)

Introduction to Scientific Programming Using Java Page 13

Figure 1.0 Java Compilation and execution process.

Note: Other programs, called Integrated Development Environments (IDEs), have been created

to support the development of Java programs. IDEs combine an editor, compiler, and other Java

support tools into a single application. The specific tools you will use to develop your programs

depend on your environment. Examples of IDEs include NetBeans, Eclipse, BlueJ etc.

Introduction to Scientific Programming Using Java Page 14

General Learning Objectives for Week 2: Java Programming Basics II

Specific Learning Objectives:

Objectives

f. Using Simple Graphical User Interface
g. Apply Graphical Classes

Introduction to Scientific Programming Using Java Page 15

Using Simple Graphical Interface
This week we will employ simple graphical classes – JOptionPane to repeat the same programs
which we implemented in week one. In the program presented in week one the output was
presented to the windows command prompt.

The JOptionPane class (javax.swing package) enables the user to use its static methods
showInputDialog and showMessageDialog to accept data and display information graphically.

The HelloWorldGUI.java which implements JOptionPane static methods for displaying hello
world to the user is presented below:

Figure 2.1 HelloWorldGUI.java
 1 /*
 2 * HelloWolrdGUI.java
 3 *
 4 */
 5
 6
 7 import javax.swing.JOptionPane;
 8
 9 public class HelloWorldGUI {
10 public static void main(String[] args) {
11 String msg = "Hello Wolrd" ;
12 String ans = "" ;
13
14 JOptionPane.showMessageDialog(null , msg);
15
16 // accept the users name
17 ans = JOptionPane.showInputDialog(null , "Enter your Name Please"
);
18
19 // say hello to the user
20 JOptionPane.showMessageDialog(null , "Hello " + ans);
21
22 } // end method main
23
24 } // end of class HelloWorldGUI

Line 7 we imported he JOptionPane class so that the JVM will ensure that we use it promperly.

The class definition header is presented in line 9. This is followed by the main method header

which must be mus be written this way it is presented in line 10. Two string variables are used,

one for displaying output – msg – and the other for input –ans-. The Graphical message is

Introduction to Scientific Programming Using Java Page 16

displayed with “Hello World” and a command button labeled ok shown. The user is requested to

enter his/her name (line 17) and a hello message with the name enter is displayed –(line 20).

The outputs of the program are presented below.

Figure 2.2 sample output of HelloWorldGUI.java program.

Introduction to Scientific Programming Using Java Page 17

General Learning Objectives for Week 3:

Specific Learning Objectives:

h. Know Java Data Types.
i. Know Java Identifiers and Reserved Words.
j. Know Memory Allocation Concepts.
k. Give the general format of arithmetic expression.
l. Know operator precedence rules.
m. Be able to evaluate simple and complex arithmetic expression.
n. Understand the concept of Data Conversion.

Introduction to Scientific Programming Using Java Page 18

Data Types in Java
A data type defines a set of values and the operations that can be defined on those values. Data

types in Java can be divided into two groups:

a. Primitive Data Types

b. Reference Data Types (or Non-Primitives)

Data types are especially important in Java because it is a strongly typed language. This means

that all operations are type checked by the compiler for type compatibility. Illegal operations

will not be compiled. Thus, strong type checking helps prevent errors and enhances reliability.

To enable strong type checking, all variables, expressions, and values have a type. There is no

concept of a “type-less” variable, for example. Furthermore, the type of a value determines what

operations are allowed on it. An operation allowed on one type might not be allowed on another.

Primitive Data Types

The term primitive is used here to indicate that these types are not objects in an object-oriented

sense, but rather, normal binary values. These primitive types are not objects because of

efficiency concerns. All of Java’s other data types are constructed from these primitive types.

Java strictly specifies a range and behavior for each primitive type, which all implementations

of the Java Virtual Machine must support. Because of Java’s portability requirement, Java is

uncompromising on this account. For example, an int is the same in all execution environments.

This allows programs to be fully portable. There is no need to rewrite code to fit a specific

platform. Although strictly specifying the size of the primitive types may cause a small loss of

performance in some environments, it is necessary in order to achieve portability.

There are eight primitive data types in Java: four subsets of integers, two subsets of floating

point numbers, a character data type, and a boolean data type. Everything else is represented

using objects. Let’s examine these eight primitive data types in some detail.

Introduction to Scientific Programming Using Java Page 19

Integers and Floating Points
Java has two basic kinds of numeric values: integers, which have no fractional part, and floating

points, which do. There are four integer data types (byte, short, int, and long) and two floating

point data types (float and double). All of the numeric types differ by the amount of memory

space used to store a value of that type, which determines the range of values that can be

represented. The size of each data type is the same for all hardware platforms. All numeric types

are signed, meaning that both positive and negative values can be stored in them. Figure 3.0

summarizes the numeric primitive types.

Type Storage Minimum Value Maximum Value

byte 8 bits -128 127

short 16 bits –32,768 32,767

int 32 bits –2,147,483,648 2,147,483,647

long 64 bits –9,223,372,036,854,775,808 9,223,372,036,854,775,807

float 32 bits Approximately –3.4E+38
with 7 significant digits

Approximately 3.4E+38
with 7 significant digits

double 64 bits Approximately –1.7E+308
with 15 significant digits

Approximately 1.7E+308
with 15 significant digits

Table 3.0 List of Java’s in-built numeric primitive data types.

When designing a program, we sometimes need to be careful about picking variables of

appropriate size so that memory space is not wasted. For example, if a value will not vary

outside of a range of 1 to 1000, then a two-byte integer (short) is large enough to accommodate

it. On the other hand, when it’s not clear what the range of a particular variable will be, we

should provide a reasonable, even generous, amount of space. In most situations memory space

is not a serious restriction, and we can usually afford generous assumptions. Note that even

though a float value supports very large (and very small) numbers, it only has seven significant

digits. Therefore if it is important to accurately maintain a value such as 50341.2077, we need

to use a double.

A literal is an explicit data value used in a program. The various numbers used in programs

such as Facts and Addition and Piano Keys are all integer literals.

Introduction to Scientific Programming Using Java Page 20

Java assumes all integer literals are of type int, unless an L or l is appended to the end of the

value to indicate that it should be considered a literal of type long, such as 45L.

Likewise, Java assumes that all floating point literals are of type double. If we need to treat a

floating point literal as a float, we append an F or f to the end of the value, as in 2.718F or

23.45f. Numeric literals of type double can be followed by a D or d if desired.

The following are examples of numeric variable declarations in Java:

int marks = 100;

byte smallNo1, smallNo2;

long totalStars = 86827263927L;

float ratio = 0.2363F;

double mega = 453.523311903;

Arithmetic Operators
Arithmetic operators are special symbols for carrying out calculations. These operators enable

programmers to write arithmetic expressions. An expression is an algebraic like term that

evaluates to a value; it comprises of one or more operands (values) joined together by one or

more operators. Below is a summary of Java arithmetic operators in their order of precedence,

that is, the order in which the arithmetic expression are evaluated.

Introduction to Scientific Programming Using Java Page 21

Order of
Precedence Operator Symbol

Algebraic
Expression

Java
Expression Association

First

Multiplication * a x c a * c Left to Right

Division / x/y or x ÷ y or

 x/y Left to Right

Modulus or
Remainder

% w mod 3 w % 3 Left to Right

Second
Addition + d+ p d + p Right to Left

Subtraction - j – 2 j - 2 Right to Left

Table 3.1 Operators, precedence and association of operators.

Precedence of Arithmetic Operators
The order in which arithmetic operators are applied on data values (operand) is termed rules of

operator precedence. These rules are similar to that of algebra. They enable Java to evaluate

arithmetic expressions consistently and correctly.

The rules can be summarized thus:

a. Multiplication, division and modulus are applied first. Arithmetic expressions with

several of these operators are evaluated from the left to the right.

b. Addition and subtraction are applied next. In the situation that an expression contains

several of these operators they are evaluated from right to left.

The order in which the expressions are evaluated is referred to as their association. Now let us

consider some examples in the light of the rules of operator precedence; we will list both the

algebraic expression and the equivalent java expression.

Algebra :

Java: (x + y + z)/3;

This expression calculates the average of three values. The parentheses is required so that the

values represented by x, y and z will be added and the result divided by three. If the parentheses

is omitted only z will be divided by three because division has a higher precedence over

addition.

Algebra: y = mx + c

Introduction to Scientific Programming Using Java Page 22

Java: y = m * x + c;

In this case the parentheses is not required because multiplication has higher precedence over

addition.

Algebra: z = pr % q + w/x – y

Java: z = p * r % q + w/x – y;

In this example, the expression contains the operators *, % followed by +, / and -. The order of

execution is listed below:

Note: the order of precedence may be overwritten by using parentheses, that is to say if we

desire addition before multiplication or division for example we can include the that part of the

expression in parentheses. In the above expression, if x - y is written as (x – y), then the value

represented by the y will be subtracted from that of x then the result will be divided by w.

Exercises

Show the order of execution the following arithmetic expressions and write their Java

equivalents:

i.

ii.

iii.

iv.

v. T= 4r + d mod 4

Reference (Non-primitive Data Types)
Reference or non-primitive type data is used to represent objects. An object is defined by a

class, which can be thought of as the data type of the object. The operations that can be

Introduction to Scientific Programming Using Java Page 23

performed on the object are defined by the methods in the class. The attributes or qualities of

the objects of a class are defined by the fields – which in essence are primitive type data values.

Every object belongs to a class and can be referenced using identifiers. An identifier is a name

which is used to identify programming elements such as memory location, names of classes,

Java statements and so on. The names used for identifying memory locations are commonly

referred to as memory variables or variables for short.

Variable names are created by the programmer for representing values to be stored in the

computer memory. Each memory location is associated with a type, a value, and a name.

primitive data such as int (integer) can hold a single value and that value must correspond to the

data type specified by the programmer. Reference data types on the other hand contain not the

objects in memory but the addresses of where the objects (their method and fields etc) are stored

in memory. Examples of reference data types include arrays, strings and objects of any class

declared by the programmer.

Pertinent data about any object can be gathered and used to represent attributes (fields) and

tasks the objects can perform (methods) by using a well defined interface. Once a class has been

declared several objects can be created from it. The objects protect their own data and it cannot

be directly accessed by other objects.

In the next section we will summarized the rules for creating variables in Java.

a. Variables names may start with and alphabet (a-z / A-Z) and he remaining characters may

be, an underscore (_) or a dollar sign, or a number for example sum, counter, firstName, bar2x

amount_Paid are all valid variable names. 9x, 0value are invalid.

b. Embedded blank spaces may not be included in variable names though an underscore

may be used to join variable names that comprises of compound words. Example x 10 is not

valid, it could be written as x_10 or x10.

c. Reserved words (words defined for specific use in Java) may not be employed as

variables names. Example loop, do, for, while, switch are reserved.

d. Special symbols such as arithmetic operators, comma (,), ?, /, ! are not allowed.

e. Variable name may be of any length.

Introduction to Scientific Programming Using Java Page 24

It is a good programming practice to use names that indicate the meaning of the value it

represents. For amountPaid, or amt_paid can be easily remembered that it represent an amount

paid value. Though if the programmer had used x or y as the variable name it would still have

been valid.

Java is a case sensitive programming language thus the programmer must be very careful and

consistent when giving and using variable names. Java distinguishes between upper case

(capital) letters and lower case letters (small letters) hence ‘a’ is different from ‘A’ as far as Java

is concerned.

Exercises: Study the variable names below and indicate whether they are valid or not. If invalid

give reasons.

a. &maxium ____________________________

b. X ___________________________________

c. Absolute temperature ___________________

d. Money _______________________________

e. 30yearold ______________________________

f. initVolume _____________________________

Variable Declaration
Variable may represent values that are expected to change or not during the execution of a

computer program. When declaring variable names the scope (visibility) of variables from other

part of the program may be specified, the type of data that should be stored in the area of

memory.

Variable names may also represent either primitive data or reference data. The general form for

creating or declaring variable is presented below.

 accessModifier dataType variableList

Where:

accessModifier determines the visibility of the variable to other part of the program e.g. public

or private.

Introduction to Scientific Programming Using Java Page 25

dataType represents either primitive (int, char, float) or reference type data (array, String).

variableList is one or more valid variables separated using commas.

Examples:

a. private int x, y, z;

In this example the access modifier is private, the data type is int and the variables that are

permitted to hold integer values are the identifiers x, y and z. similar pattern is applied in other

examples below.

b. private float balance, initTemperature;

c. private boolean alreadyPaid;

d. public long population;

Alternatively the initial values to be stored in the memory may be specified when declaring the

variables. The general form for declaring and initializing the variables is presented below:

accessModifier dataType variable1= value1, variable2 = value2, … , variable = valuen;

We will illustrate with examples.

private int x = 10;

private int a = 0, b= 0, c = 0;

public double amountLoaned = 100;

Note: we declaring variables in a method (e.g. main method) do not include the access

modifiers because all variables declared in methods are implicitly private hence localized to that

method. The examples given above can be used to create instance variables.

Now let us write a program to put together all that we have learnt. The program listing below

demonstrates how to create primitive variables (int) and non-primitive variable (of type

Scanner). It demonstrates how to write arithmetic expressions, input and output data from the

user.

/*
 * AddTwoNo.java
 * Add any two integer numbers
 */

Introduction to Scientific Programming Using Java Page 26

import java.util.Scanner;

public class AddTwoNo {

 public static void main(String[] args) {
 // declare primitive variables
 int firstNumber = 10;
 int secondNumber = 20;
 int sum = 0;

 sum = firstNumber + secondNumber;

 system.out.println("Sum of " + firstNumber + " and " +
 secondNumber + " is " + sum);

 // declare reference variable of type Scanner
 Scanner input = new Scanner(System.in);

 // Accept values from the user
 System.out.println("Enter first integer number please ");
 firstNumber = input.nextInt();

 System.out.println("Enter second integer number please ");
 secondNumber = input.nextInt();

 // calculate sum and display result
 sum = firstNumber + secondNumber;

 System.out.println("Sum of " + firstNumber + " and " +
 secondNumber + " is " + sum);

 } // end of method main

} // end of class AddTwoNos

Listing 3.1 – AddTwoNos.java

Now let us dissect the program. We will only pay particular attention to parts of the program

that were introduced.

After the main comments at the beginning of the program, just before the class declaration we

have the statement import statement. This statement is always placed before the class

declaration:

Introduction to Scientific Programming Using Java Page 27

import java.util.Scanner;

This statement instructs Java to include the Scanner as part of our program so that it will be able

to ensure that we use the elements of this class properly. A collection of classes are grouped

together in Java for ease of usage and to facilitate software reuse. A collection of classes

grouped together are referred to as a package. The Scanner class is a member of the java.util

package. By importing classed and using them in our classes makes Java a robust programming

language.

Next is the class definition header, then the main method definition header both of which we

have discussed earlier. Within the main method three local variables of type int (integer) are

declared. It is advisable to declare individual variables on separate tine as this enhances

readability, a plus during debugging.

 // declare primitive variables
 int firstNumber = 10;
 int secondNumber = 20;
 int sum = 0;

The next instruction is an arithmetic expression that calculates the sum of the first and second

numbers and assigns the resulting values to sum.

 sum = firstNumber + secondNumber;

In order for our program to permit the user to enter values via the standard input stream using an

object the Scanner class (input).

 Scanner input = new Scanner(System.in);

Let us tarry a little while and study this statement in depth. The first part of the expression:

Scanner input; declares an object reference input of class Scanner; the second part of the

expression instructs Java to create the object in memory using the new keyword that calls a

special method (constructor) to initialize fields of the class to initial values. This single

statement may be broken down into two:

Introduction to Scientific Programming Using Java Page 28

Scanner input; // declares the variable

input = new Scanner(System.in); // creates an instance (object) of the Scanner class.

Before the user enters any value, he is prompted accordingly; this is achieved through the use of

the println statement. The first and second println statements prompts the user for the first and

second integer numbers respectively.

The statement

firstNumber = input.nextInt();

instructs the computer to read an integer value from the keyboard. To achieve this, the nextInt()

method of the Scanner class was invoked using an object reference input.

After accepting the integer numbers from the user the sum is calculated as before and then

displayed to the output window.

Using Graphical User Interfaces
The entire program we have written so far has inputted or displayed prompts to the user via the

output window. In most real world programs, this will not be the case. Most modern

applications display messages to the user using windows – dialog boxes – and use same to

accept data from the user. In our next example, we will improve on the addition program by

using dialog boxes.

/*
 * AddTwoNoDialog.java
 * Add any two integer numbers
 */

import javax.swing.JOptionPane;

public class AddTwoNoDialog {

 public static void main(String[] args) {
 // declare primitive variables
 int firstNumber = 10;
 int secondNumber = 20;
 int sum = 0;

Introduction to Scientific Programming Using Java Page 29

 String input; // for accepting input from the user
 String output; // for displaying output

 // Accept values from the user
 input = JOptionPane.showInputDialog(null, "Enter first integer number",
 "Adding Integers", JOptionPane.QUESTION_MESSAGE);

 firstNumber = Integer.parseInt(input);

 input = JOptionPane.showInputDialog(null, "Enter second integer number",
 "Adding Integers", JOptionPane.QUESTION_MESSAGE);

 secondNumber = Integer.parseInt(input);

 // calculate sum and display result
 sum = firstNumber + secondNumber;

 // build output string
 output = "Sum of " + firstNumber + " and " + secondNumber + " is "
 + sum;

 // display output
 JOptionPane.showMessageDialog(null, output, "Adding two integers",
 JOptionPane.INFORMATION_MESSAGE);

 } // end of method main

} // end of class AddTwoNos

Listing 3.2 AddTwoNoDialog.java

In this program, we imported the JOptionPane class (package javax.swing). JOptionPane

contains several static methods and static fields, some of which was implemented in the listing

3.2.

Let us go through the program and see how it works. We will only emphasize new concepts that

were introduced. In the program we imported the JOptionPane class (javax.swing package).

This will ensure Java loads the class and that we make use of the features of the class properly.

This class enables us to create objects that displays dialog boxes for both input and output.

Two string variables for handling both input and output were declared using the statements:

 String input; // for accepting input from the user

Introduction to Scientific Programming Using Java Page 30

 String output; // for displaying output

To accept the input from the user we employed the static method showInputDialog() of the

class JOptionPane. The code is represented below:

 // Accept values from the user
 input = JOptionPane.showInputDialog(null, "Enter first integer number",
 "Adding Integers", JOptionPane.QUESTION_MESSAGE);

showInputDialog method always returns a string value thus we have to assign it return value to

the string variable input. The first parameter has a null value which implies that the dialog box

will be displayed in the middle of the computer screen. The next parameter is the prompt-

message- in this case “Enter first integer number”, followed by the title that will be displayed as

the title of the dialog box see figures 3.1a and 3.1b. the final parameter specifies the icon to be

displayed.

Each value entered by the user and assigned to the variable input is the wrapped into an integer

using the wrapper class Integer. This is one of the wrapper classes that is used to convert

primitives to their object equivalent and vice versa were entered by the user is assigned

Figure 3.1a Figure 3.1b

Figure 3.3c

 // display output
 JOptionPane.showMessageDialog(null, output, "Adding two integers",
 JOptionPane.INFORMATION_MESSAGE);

Introduction to Scientific Programming Using Java Page 31

Introduction to Scientific Programming Using Java Page 32

General Learning Objectives for Week 4: Program Development Techniques

Specific Learning Objectives:

o. Understand the concept developmental techniques of program development.
p. Know how to input and output data using graphical user interfaces
q. Apply arithmetic operators in manipulating input data

Introduction to Scientific Programming Using Java Page 33

Program Development Stages
Programming in any programming language is not a task that should be trivialized as mere entry

of code into the computer. In order to develop robust and efficient applications the

developer/programmer must follow certain steps. Most beginning programmers simply start

keying in code, for simple applications this may be ok, for most real life applications that may

include hundreds of classes and codes spanning thousands of line such an approach to

programming is as good as a Mission Impossible.

In this chapter we will introduce the basic steps that are to be employed when developing a Java

program. Programming basically involves problem solving – that is we write programs to

efficiently and effectively meet the needs of the users.

Problem solving
The purpose of writing a program is to solve a problem. Problem solving, in general, consists of

multiple steps:

a. Understanding the problem.

b. Breaking the problem into manageable pieces.

c. Designing a solution.

d. Considering alternatives to the solution and refining the solution.

e. Implementing the solution.

f. Testing the solution and fixing any problems that exist.

The first step, understanding the problem, may sound obvious, but a lack of attention to this

step has been the cause of many misguided efforts. If we attempt to solve a problem we don’t

completely understand, we often end up solving the wrong problem or at least going off on

improper tangents. We must understand the needs of the people who will use the solution.

These needs often include subtle nuances that will affect our overall approach to the solution.

Introduction to Scientific Programming Using Java Page 34

After we thoroughly understand the problem, we then break the problem into manageable pieces

and design a solution. These steps go hand in hand. A solution to any problem can rarely be

expressed as one big activity. Instead, it is a series of small cooperating tasks that interact to

perform a larger task. When developing software, we don’t write one big program. We design

separate pieces that are responsible for certain parts of the solution, subsequently integrating

them with the other parts.

Our first inclination toward a solution may not be the best one. We must always consider

alternatives and refine the solution as necessary. The earlier we consider alternatives, the easier it

is to modify our approach.

Implementing the solution is the act of taking the design and putting it in a usable form. When

developing a software solution to a problem, the implementation stage is the process of actually

writing the program. Too often programming is thought of as writing code. But in most cases,

the final implementation of the solution is one of the last and easiest steps. The act of designing

the program should be more interesting and creative than the process of implementing the design

in a particular programming language.

Finally, we test our solution to find any errors that exist so that we can fix them and improve the

quality of the software. Testing efforts attempt to verify that the program correctly represents the

design, which in turn provides a solution to the problem.

Throughout this text we explore programming techniques that allow us to elegantly design and

implement solutions to problems. Although we will often delve into these specific techniques in

detail, we should not forget that they are just tools to help us solve problems.

Let us consider a simple problem and use it to explain these concepts in some detail. Let us

design and write a program to calculate the sum of any three integer numbers and calculate their

average.

The task before us is quite simple enough to understand. To know what we are to do we can

begin by asking ourselves the ‘what’ question. What are we (or in effect the program) expected

to do? What are the major processes involved in calculating the sum and average of any three

numbers? These could be summarized as follows:

Introduction to Scientific Programming Using Java Page 35

a. First we must be able to accept any three numbers from the user.

b. Calculate the average.

c. Display average.

Next, we look at each of these steps and see if we break them and refine them as necessary; from

there onwards we plan how we will implement our solution. This is sometimes described as

asking the how question. How can we achieve the tasks we have identified and if necessary

refine the step.

Considering step ‘a’ we do not need to break it down. Let us implement this in our program

using dialog boxes.

Then step ‘b’ - calculate the average – how do we calculate average of three integer numbers?

This can be broken down into two steps that is:

i. Add up the three numbers to calculate their sum.

ii. Divide the sum by three to calculate the average.

The resulting value – average – may be an integer value or a floating point value. This being the

case we would declare average as double.

Finally, we consider the step c, that is, displaying the result. We will display the numbers added

and then the average using dialog boxes also.

The entire processing steps (algorithm) are rewritten as:

a. First we must be able to accept any three numbers from the user.

b. Calculate the average.

i. Add up the three numbers to calculate their sum.

ii. Divide the sum by three to calculate the average.

c. Display average.

Introduction to Scientific Programming Using Java Page 36

Now we proceed to write the Java program, correct any errors and test with sample data. The

source code for the program is presented below:

/*
 * AverageThreeIntegers
 * Calculates the sumand average of any three integer numbers
 */

import javax.swing.JOptionPane;

public class AverageThreeIntegers
{
 public static void main(String args[])
 {
 int firstNumber; // first integer number
 int secondNumber; // second integer number
 int thirdNumber; // third integer number
 int sum; // sum of the three numbers

 double average; // average of the three numbers

 String input; // input values
 String result; // output generating string

 // Accept inteher numbers from he user
 input = JOptionPane.showInputDialog(null, "Enter first number: ");
 firstNumber = Integer.parseInt(input); // wrap input to integer

 input = JOptionPane.showInputDialog(null, "Enter second number: ");
 secondNumber = Integer.parseInt(input); // wrap input to integer

 input = JOptionPane.showInputDialog(null, "Enter third number: ");
 thirdNumber = Integer.parseInt(input); // wrap input to integer

 // Calculate sum
 sum = firstNumber + secondNumber + thirdNumber;

 // Calculate average
 average = sum/3.0;

 // Build output string and display output
 result = "Average of " + firstNumber + ", " + secondNumber + " and " +
 thirdNumber + " is = " + average;

 JOptionPane.showMessageDialog(null, result, "Average of 3 Integers",
 JOptionPane.INFORMATION_MESSAGE);

Introduction to Scientific Programming Using Java Page 37

 } // end method main

} // end class AverageThreeIntegers

Listing 4.1 AverageThreeIntegers.java

Figure 4.1

Figure 4.2

Introduction to Scientific Programming Using Java Page 38

The program listing 4.1 needs no elaborate explanation; all the material presented has been

explained earlier. Figures 4.1 and 4.2 shows the sample input and output results obtained when

the program is executed.

Introduction to Scientific Programming Using Java Page 39

General Learning Objectives for Week5: Understand Insatiable Classes

Specific Objectives:

a. Define Insatiable Classes.
b. Understand the concepts of Class Members
c. Differentiate between Instance and Local Variables
d. Understand the concepts of declaring methods
e. Describe parameter passing in method definitions
f. Differentiate between public and private data

Introduction to Scientific Programming Using Java Page 40

Classes, Objects, Methods and Instance Variables

Let's begin with a simple analogy to help you understand classes and their contents. Suppose you

want to drive a car and make it go faster by pressing down on its accelerator pedal. What must

happen before you can do this? Well, before you can drive a car, someone has to design the car.

A car typically begins as engineering drawings, similar to the blueprints used to design a house.

These engineering drawings include the design for an accelerator pedal to make the car go faster.

The pedal "hides" the complex mechanisms that actually make the car go faster, just as the brake

pedal "hides" the mechanisms that slow the car and the steering wheel "hides" the mechanisms

that turn the car. This enables people with little or no knowledge of how engines work to drive a

car easily.

Unfortunately, you cannot drive the engineering drawings of a car. Before you can drive a car,

the car must be built from the engineering drawings that describe it. A completed car will have

an actual accelerator pedal to make the car go faster, but even that's not enough the car will not

accelerate on its own, so the driver must press the accelerator pedal.

Now let's use our car example to introduce the key programming concepts of this section.

Performing a task in a program requires a method. The method describes the mechanisms that

actually perform its tasks. The method hides from its user the complex tasks that it performs, just

as the accelerator pedal of a car hides from the driver the complex mechanisms of making the car

go faster. In Java, we begin by creating a program unit called a class to house a method, just as a

car's engineering drawings house the design of an accelerator pedal. In a class, you provide one

or more methods that are designed to perform the class's tasks. For example, a class that

represents a bank account might contain one method to deposit money to an account, another to

withdraw money from an account and a third to inquire what the current balance is.

Just as you cannot drive an engineering drawing of a car, you cannot "drive" a class. Just as

someone has to build a car from its engineering drawings before you can actually drive a car, you

must build an object of a class before you can get a program to perform the tasks the class

Introduction to Scientific Programming Using Java Page 41

describes how to do. That is one reason Java is known as an object-oriented programming

language.

When you drive a car, pressing its gas pedal sends a message to the car to perform a taskthat is,

make the car go faster. Similarly, you send messages to an object each message is known as a

method call and tells a method of the object to perform its task.

Thus far, we have used the car analogy to introduce classes, objects and methods. In addition to

the capabilities a car provides, it also has many attributes, such as its color, the number of doors,

the amount of gas in its tank, its current speed and its total miles driven (i.e., its odometer

reading). Like the car's capabilities, these attributes are represented as part of a car's design in its

engineering diagrams. As you drive a car, these attributes are always associated with the car.

Every car maintains its own attributes. For example, each car knows how much gas is in its own

gas tank, but not how much is in the tanks of other cars. Similarly, an object has attributes that

are carried with the object as it is used in a program. These attributes are specified as part of the

object's class. For example, a bank account object has a balance attribute that represents the

amount of money in the account. Each bank account object knows the balance in the account it

represents, but not the balances of the other accounts in the bank. Attributes are specified by the

class's instance variables.

The remainder of this chapter presents examples that demonstrate the concepts we introduced in

the context of the car analogy.

Insatiable Classes

Insatiable classes can be permits users to create instances – objects of the class. Each object of

the class will have its own set of variables – instance variables that represent the current state of

the object and methods that defines the task that object can perform. Technically each method

should perform only a single task, and it is permitted to call other methods to assist it.

Instance variables are declared outside any method inside the class and usually immediately after

the class definition header. See line 8 of figure 5.1. the access modifier is used to ensure that

each object maintains it own set of variables and thus not visible to any other object of the class

Introduction to Scientific Programming Using Java Page 42

or any other class. Variables declared inside a method are not visible to any other member of that

class or outside that class. Such variables are termed local variables. Instance variables are

visible to all members of the class, but not to members of another class. To enable other classes

to access instance variables in order to reflect a change in the state of the objects we use public

service methods – set and get – methods to facilitate this through a well defined mechanism. The

set methods enables changes while get methods gives the current state of the object.

Declaring a Class with a Method and Instantiating an Object of a Class

We begin with an example that consists of classes Circle (Fig. 5.1) and CircleTest (Fig. 5.2).

Class Circle (declared in file Circle.java) will be used to define the properties of a Circle

object and tasks which each object of the class will be able to perform – in this case calculate the

area of a Circle instance. Class CircleTest (declared in file CircleTest.java) is an

application class in which the main method will use class Circle . Each class declaration that

begins with keyword public must be stored in a file that has the same name as the class and

ends with the .java file-name extension. Thus, classes Circle and CircleTest must be

declared in separate files, because each class is declared public .

 1 /*
 2 * Circle.Java
 3 * Create a Circle Object and Calculate the Area of the Circle
 4 */
 5
 6 public class Circle {
 7 // Create Instance Variables
 8 private double radius;
 9
10 public Circle() {
11 radius = 0;
12 }
13
14 // User defined Constructor for Creating Circle Obj ect with Specified
15 // radius - r
16 public Circle(double r){
17 setRadius(r);
18 }
19
20 // setRadius initializes radius and ensuees that it is always in a
21 // consistent state
22 public void setRadius(double r){
23 radius = r;
24
25 } // end method setRadius

Introduction to Scientific Programming Using Java Page 43

26
27 // getRadius returns radius to clients of Circle cl ass
28 public double getRadius(){
29 return radius;
30
31 } // end method getRadius
32
33 // Calculates the area of the circle
34 public double calcArea(){
35 return Math.PI * Math.pow(radius, 2);

36
37 } // end method calcArea
38 } // end class Circle

Figure 5.1

Class Circle

The Circle class declaration (Fig. 3.1) contains a two constructor methods, a no argument

constructor Circle()m ethod (lines 10-12) that initializes the radius of a Circle object to its

default value of zero (0. The second constructor method is a programmer declared constructor

Circle(double r) method (lines 16-18) that that initializes a Circle object using the values

specified by the user.

The methods setRadius() and setRadius() are public service methods that enables the

instance variable radius (declared in line 8) to be visible to other classes. The class declaration

also contains calcArea() that calculates the area of the circle.

So far, each class we declared had one method named main (a special method that is always

called automatically by the Java Virtual Machine (JVM) when you execute an application). Most

methods do not get called automatically. As you will soon see, you must call method calcArea

to tell it to perform its task.

The method declaration begins with keyword public to indicate that the method is "available to

the public" that is, it can be called from outside the class declaration's body by methods of other

classes. Keyword double indicates that this method will perform a task and will return (i.e., give

back) a value of type double to its calling method when it completes its task. Method

setRadius on the other hand does not return any value to its calling method thus the keyword

void.

Introduction to Scientific Programming Using Java Page 44

The name of the method, calcArea , follows the return type. By convention, method names begin

with a lowercase first letter and all subsequent words in the name begin with a capital letter. The

parentheses after the method name indicate that this is a method. An empty set of parentheses, as

shown in line 34, indicates that this method does not require additional information to perform its

task. Line 7 is commonly referred to as the method header. Every method's body is delimited by

left and right braces ({ and }), as in lines 34 and 37.

The body of a method contains statement(s) that perform the method's task. In this case, the

method contains one statement (line 35) that calculates the area of a cicle. After this statement

executes, the method has completed its task.

Next, we'd like to use class Circle in an application. As earlier stated method main begins the

execution of every application. A class that contains method main is a Java application. Such a

class is special because the JVM can use main to begin execution. Class Circle is not an

application because it does not contain main . Therefore, if you try to execute Circle by typing

java Circle in the command window, you will get the error message:

 Exception in thread "main" java.lang.NoSuchM ethodError: main

Class CircleTest

The CircleTest class declaration (Fig. 5.2) contains the main method that will control our

application's execution. Any class that contains main declared as shown on line 7 can be used to

execute an application. This class declaration begins at line 4 and ends at line 16. The class

contains only a main method, which is typical of many classes that begin an application's

execution.

Figure 5.1a Figure 5.1b

Introduction to Scientific Programming Using Java Page 45

 1 /*
 2 * CircleTest.java
 3 *
 4 */
 5
 6 package MyTrig;
 7
 8 import javax.swing.JOptionPane;
 9
10 public class CircleTest
11 {
12
13 public static void main(String[] args)
14 {
15 // Declare local variables
16 String input;
17 String output;
18
19 double newRadius = 0;
20
21 // Create Circle object using the no-argument const ructor
22 Circle circle1 = new Circle();
23
24 // create another Circle instance class using the P rogrammer
25 // declared constructor
26 Circle circle2 = new Circle(5); // circle has a radius of 5
27
28 // display state of Circle objects
29 output = "Radius = " + circle1.getRadius() +
30 " \nArea = " + circle1.calcArea();
31 JOptionPane.showMessageDialog(null , output, "Circle1" ,
32 JOptionPane.INFORMATION_MESSAGE);
33
34 output = "Radius = " + circle2.getRadius() +
35 " \nArea = " + circle2.calcArea();
36 JOptionPane.showMessageDialog(null , output, "Circle2" ,
37 JOptionPane.INFORMATION_MESSAGE);
38
39 // Allow user to alter the state of circle1 object
40 input = JOptionPane.showInputDialog(null , "Enter Radius: ");
41 newRadius = Double.parseDouble(input);
42
43 circle1.setRadius(newRadius); // reset radius variable
44
45 // display current radius and area of circle1

Figure 5.1c Figure5.1d

Introduction to Scientific Programming Using Java Page 46

46 output = "Radius = " + circle2.getRadius() +
47 " \n Area = " + circle2.calcArea();
48 JOptionPane.showMessageDialog(null , output, "Circle2" ,
49 JOptionPane.INFORMATION_MESSAGE);
50
51 } // end method main
52
53 } // end class CircleTest

Figure 5.2

Lines 13-51 declare method main . Recall that the main header must appear as shown in line 13;

otherwise, the application will not execute. A key part of enabling the JVM to locate and call

method main to begin the application's execution is the static keyword (line 13), which

indicates that main is a static method. A static method is special because it can be called

without first creating an object of the class in which the method is declared.

In this application, we'd like to call class Circle 's calcArea method to calculate the area of any

Circle object. Typically, you cannot call a method that belongs to another class until you create

an object of that class, as shown in lines 30 and 47. We begin by declaring two variables

circle1 and circle2 . Note that the variable's type is Circle the class we declared in Fig. 5.1.

Each new class you create becomes a new type in Java that can be used to declare variables and

create objects. Programmers can declare new class types as needed; this is one reason why Java

is known as an extensible language.

Variables circle1 and circle2 are initialized with the result of the class instance creation

expression new Circle()and circle2(5) respectively . Keyword new creates a new object

of the class specified to the right of the keyword (i.e., Circle). The parentheses to the right of

the Circle are required. Those parentheses in combination with a class name represent a call to

a constructor, which is similar to a method, but is used only at the time an object is created to

initialize the object's data.

Just as we can use object System.out to call methods print , printf and println , we can now

use Circle objects to call methods calcArea, setRadius and getRadius . Line 30 calls

the method calcArea (declared at lines 34-37 of Fig. 5.1) using variable circle1 followed by a

dot separator (.), the method name calcArea and an empty set of parentheses. This call causes

the calcArea method to perform its task. In line 29, "circle1 " indicates that main should use

Introduction to Scientific Programming Using Java Page 47

the Circle object that was created on line 22. Line 34 of Fig. 5.1 indicates that method

calcArea has an empty parameter list that is, calcArea does not require additional information

to perform its task. For this reason, the method call (line 29 of Fig. 5.2) specifies an empty set of

parentheses after the method name to indicate that no arguments are being passed to method

calcArea . When method calcArea completes its task, method main continues executing at line

51. This is the end of method main , so the program terminates. See Figures 5.1a-5.1d for sample

run output.

Methods and Constructors a Deeper Look

As we earlier mentioned, methods are used for specifying the tasks that objects of the class can

perform. Constructors are special methods that are used for initializing objects when they are

created. In order to see the differences between the constructors and regular (non-constructor)

methods, we have presented below the structure of a method:

accessModifer returnType methodName(parameterList)
{
 statements
 return statement
}

Where:

accessModifer (access modifier) specifies the visibility of the method to other classes – the

access modifier may be specified public or private. Public specifies that the method is visible to

other classes “that is visible to the public” while private is the exact opposite. Private methods

cannot be accessed outside the class from which it is defined and thus it cannot be inherited.

returnType specifies the “nature” of the value the method gives back to its calling method (if

any) when it completes its task. The return type could a primitive type value or reference type

value as the case may be.

methodName (method name) is an identifier used to make reference to the method.

parameterList is an optional list of identifiers representing the values (arguments) to be passed

into the method. The parameters –often referred to as formal parameters – are used by methods

Introduction to Scientific Programming Using Java Page 48

in carrying out of their tasks. They must have a type followed by an identifier. Several

parameters must be separated using commas.

statements – instructions that enable the method to carry out its tasks.

return statement is used to return (send) data back to the calling method. When the return

statement is implemented without a value following it, then the returnType must be specified as

void.

 Both regular methods and constructors are permitted to have parameters (formal parameters).

Note: values passed into methods and constructors are referred to as actual parameters which are

copies of the actual data except when the data are of type reference.

Differences between Methods and Constructors

a. Constructors must have the same name as the class - both in capitalization and in

sequence - in which it is declared.

b. Constructors do not have a return type in its method definition header.

c. The return statement is not required.

d. Constructors are only executed when an object is created, they may not be invoked if

the state of the object alters. In such a situation that the state of the object changes, public

service methods will be required to assist in reflecting the change.

e. Constructors may not be declared as static as they are involved in the creation and

initialization of the objects themselves.

Introduction to Scientific Programming Using Java Page 49

General Learning Objectives for Week7: Know the Use of Conditional Statements

Specific Objectives:

g. Understand algorithm
h. Understand pseudocodes
i. Know and identify relational and logical operators
j. Know how to write simple relational and logical expressions
k. Know the structure of the if-statement
l. Apply the if-statement
m. Know and apply the switch statement
n. Apply nested if-statements

Introduction to Scientific Programming Using Java Page 50

Algorithms

Any computing problem can be solved by executing a series of actions in a specific order. A

procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

3. is called an algorithm . The following example demonstrates that correctly specifying the

order in which the actions execute is important.

Consider the "rise-and-shine algorithm" followed by one executive for getting out of bed and

going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get dressed; (5) eat

breakfast; (6) carpool to work. This routine gets the executive to work well prepared to make

critical decisions. Suppose that the same steps are performed in a slightly different order: (1) Get

out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower; (5) eat breakfast; (6) carpool

to work. In this case, our executive shows up for work soaking wet.

Pseudocode

Pseudocode is an informal language that helps programmers develop algorithms without having

to worry about the strict details of Java language syntax. The pseudocode we present is

particularly useful for developing algorithms that will be converted to structured portions of Java

programs. Pseudocode is similar to everyday Englishit is convenient and user friendly, but it is

not an actual computer programming language.

Pseudocode does not execute on computers. Rather, it helps the programmer "think out" a

program before attempting to write it in a programming language, such as Java. This chapter

provides several examples of how to use pseudocode to develop Java programs.

The style of pseudocode we present consists purely of characters, so programmers can type

pseudocode conveniently, using any text-editor program. A carefully prepared pseudocode

program can easily be converted to a corresponding Java program. In many cases, this simply

requires replacing pseudocode statements with Java equivalents.

Introduction to Scientific Programming Using Java Page 51

Pseudocode normally describes only statements representing the actions that occur after a

programmer converts a program from pseudocode to Java and the program is run on a computer.

Such actions might include input, output or a calculation. We typically do not include variable

declarations in our pseudocode. However, some programmers choose to list variables and

mention their purposes at the beginning of their pseudocode

Specifying the order in which statements (actions) execute in a program is called program

control. Normally, statements in a program are executed one after the other in the order in which

they are written. This process is called sequential execution. Various Java statements, which we

will soon discuss, enable the programmer to specify that the next statement to execute is not

necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control was the root

of much difficulty experienced by software development groups. The blame was pointed at the

goto statement (used in most programming languages of the time), which allows the

programmer to specify a transfer of control to one of a very wide range of possible destinations

in a program. The notion of so-called structured programming became almost synonymous

with "goto elimination." [Note: Java does not have a goto statement; however, the word goto is

reserved by Java and should not be used as an identifier in programs.]

The research of Bohm and Jacopinimk:@MSITStore:C:\java\Java%20-

%20How%20To%20Program,%206th%20Edition%20(2004).chm::/0131483986/ch04lev1sec4.html -

ch04fn1 had demonstrated that programs could be written without any goto statements. The

challenge of the era for programmers was to shift their styles to "goto -less programming." Not

until the 1970s did programmers start taking structured programming seriously. The results were

impressive. Software development groups reported shorter development times, more frequent on-

time delivery of systems and more frequent within-budget completion of software projects. The

key to these successes was that structured programs were clearer, easier to debug and modify,

and more likely to be bug free in the first place.

Bohm and Jacopini's work demonstrated that all programs could be written in terms of only three

control structuresthe sequence structure, the selection structure and the repetition structure.

Introduction to Scientific Programming Using Java Page 52

The term "control structures" comes from the field of computer science. When we introduce

Java's implementations of control structures, we will refer to them in the terminology of the Java

Language Specification as "control statements."

Sequence Structure in Java

The sequence structure is built into Java. Unless directed otherwise, the computer executes Java

statements one after the other in the order in which they are written, that is, in sequence. In Fig.

7.1 illustrates a typical sequence structure in which two calculations are performed in order. Java

lets us have as many actions as we want in a sequence structure. As we will soon see, anywhere a

single action may be placed, we may place several actions in sequence.

 Fig. 7.1 Sequence of instruction executed one after the other.

Selection Statements in Java

Java has three types of selection statements. The if statement either performs (selects) an action

if a condition is true or skips the action, if the condition is false. The if ...else statement

performs an action if a condition is true and performs a different action if the condition is false.

The switch statement performs one of many different actions, depending on the value of an

expression.

The if statement is a single-selection statement because it selects or ignores a single action (or,

as we will soon see, a single group of actions). The if ...else statement is called a double-

selection statement because it selects between two different actions (or groups of actions). The

Introduction to Scientific Programming Using Java Page 53

switch statement is called a multiple-selection statement because it selects among many

different actions (or groups of actions).

if Single-Selection Statement

Programs use selection statements to choose among alternative courses of action. For example,

suppose that the passing grade on an exam is 60. The pseudocode statement

 If student's grade is greater than or equal to 60
 Print "Passed"

determines whether the condition "student's grade is greater than or equal to 60" is true or false.

If the condition is true, "Passed" is printed, and the next pseudocode statement in order is

"performed." (Remember that pseudocode is not a real programming language.) If the condition

is false, the Print statement is ignored, and the next pseudocode statement in order is performed.

The indentation of the second line of this selection statement is optional, but recommended,

because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in Java as

 if (studentGrade >= 60)

 System.out.println("Passed");

Note that the Java code corresponds closely to the pseudocode. This is one of the properties of

pseudocode that makes it such a useful program development tool.

if ...else Double-Selection Statement

The if single-selection statement performs an indicated action only when the condition is true;

otherwise, the action is skipped. The if ...else double-selection statement allows the

programmer to specify an action to perform when the condition is true and a different action

when the condition is false. For example, the pseudocode statement

Introduction to Scientific Programming Using Java Page 54

 If student's grade is greater than or equal to 60
 Print "Passed"
 Else
 Print "Failed"

prints "Passed" if the student's grade is greater than or equal to 60, but prints "Failed" if it is less

than 60. In either case, after printing occurs, the next pseudocode statement in sequence is

"performed."

The preceding If...Else pseudocode statement can be written in Java as

 if (grade >= 60)

 System.out.println("Passed");

 else

 System.out.println("Failed");

Note that the body of the else is also indented. Whatever indentation convention you choose

should be applied consistently throughout your programs. It is difficult to read programs that do

not obey uniform spacing conventions.

Conditional Operator (?:)

Java provides the conditional operator (?:) that can be used in place of an if ...else statement.

This is Java's only ternary operator this means that it takes three operands. Together, the

operands and the ?: symbol form a conditional expression. The first operand (to the left of the

?) is a boolean expression (i.e., a condition that evaluates to a boolean valuetrue or false), the

second operand (between the ? and :) is the value of the conditional expression if the boolean

expression is TRue and the third operand (to the right of the :) is the value of the conditional

expression if the boolean expression evaluates to false . For example, the statement

 System.out.println(studentGrade >= 60 ? "Passed" : "Failed");

prints the value of println 's conditional-expression argument. The conditional expression in

this statement evaluates to the string "Passed" if the boolean expression studentGrade >= 60

Introduction to Scientific Programming Using Java Page 55

is true and evaluates to the string "Failed" if the boolean expression is false. Thus, this

statement with the conditional operator performs essentially the same function as the if ...else

statement shown earlier in this section. The precedence of the conditional operator is low, so the

entire conditional expression is normally placed in parentheses. We will see that conditional

expressions can be used in some situations where if ...else statements cannot.

Nested if...else Statements

A program can test multiple cases by placing if ...else statements inside other if ...else

statements to create nested if...else statements. For example, the following pseudocode

represents a nested if ...else that prints A for exam grades greater than or equal to 90, B for

grades in the range 80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69

and F for all other grades:

 If student's grade is greater than or equal to 90
 Print "A"
 else if student's grade is greater than or equal to 80
 Print "B"
 else
 If student's grade is greater than or equal to 70
 Print "C"
 else
 If student's grade is greater than or equal to 60
 Print "D"
 else
 Print "F"

This pseudocode may be written in Java as

 if (studentGrade >= 90)
 System.out.println("A");
 else
 if (studentGrade >= 80)
 System.out.println("B");
 else
 if (studentGrade >= 70)
 System.out.println("C");
 else
 if (studentGrade >= 60)
 System.out.println("D");
 else
 System.out.println("F");

Introduction to Scientific Programming Using Java Page 56

If studentGrade is greater than or equal to 90, the first four conditions will be true, but only the

statement in the if -part of the first if ...else statement will execute. After that statement

executes, the else -part of the "outermost" if ...else statement is skipped. Most Java

programmers prefer to write the preceding if ...else statement as

 if (studentGrade >= 90)

 System.out.println("A");

 else if (studentGrade >= 80)

 System.out.println("B");

 else if (studentGrade >= 70)

 System.out.println("C");

 else if (studentGrade >= 60)

 System.out.println("D");

 else

 System.out.println("F");

The two forms are identical except for the spacing and indentation, which the compiler ignores.

The latter form is popular because it avoids deep indentation of the code to the right. Such

indentation often leaves little room on a line of code, forcing lines to be split and decreasing

program readability.

Dangling-else Problem

The Java compiler always associates an else with the immediately preceding if unless told to

do otherwise by the placement of braces ({ and }). This behavior can lead to what is referred to

as the dangling-else problem. For example,

 if (x > 5)
 if (y > 5)
 System.out.println("x and y are > 5");
 else
 System.out.println("x is <= 5");

appears to indicate that if x is greater than 5, the nested if statement determines whether y is

also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears that if x

is not greater than 5, the else part of the if ...else outputs the string "x is <= 5" .

Introduction to Scientific Programming Using Java Page 57

Beware! This nested if ...else statement does not execute as it appears. The compiler actually

interprets the statement as

 if (x > 5)
 if (y > 5)
 System.out.println("x and y are > 5");
 else
 System.out.println("x is <= 5");

in which the body of the first if is a nested if ...else . The outer if statement tests whether x is

greater than 5. If so, execution continues by testing whether y is also greater than 5. If the second

condition is true, the proper string"x and y are > 5" is displayed. However, if the second

condition is false, the string "x is <= 5" is displayed, even though we know that x is greater

than 5.

To force the nested if ...else statement to execute as it was originally intended, we must write it

as follows:

 if (x > 5)
 {
 if (y > 5)
 System.out.println("x and y are > 5");
 }
 else
 System.out.println("x is <= 5");

The braces ({}) indicate to the compiler that the second if statement is in the body of the first if

and that the else is associated with the first if .

Blocks

The if statement normally expects only one statement in its body. To include several statements

in the body of an if (or the body of an else for an if ...else statement), enclose the statements

in braces ({ and }). A set of statements contained within a pair of braces is called a block. A

block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in the else -part of an if ...else statement:

Introduction to Scientific Programming Using Java Page 58

 if (grade >= 60)
 System.out.println("Passed");
 else
 {
 System.out.println("Failed");
 System.out.println("You must take this course again.");
 }

In this case, if grade is less than 60, the program executes both statements in the body of the

else and prints

 Failed.

 You must take this course again.

Note the braces surrounding the two statements in the else clause. These braces are important.

Without the braces, the statement

 System.out.println("You must take this course again.");

would be outside the body of the else -part of the if ...else statement and would execute

regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught by the

compiler. A logic error (e.g., when both braces in a block are left out of the program) has its

effect at execution time. A fatal logic error causes a program to fail and terminate prematurely.

A nonfatal logic error allows a program to continue executing, but causes the program to

produce incorrect results.

Introduction to Scientific Programming Using Java Page 59

General Learning Objectives for Week8: Know the Use of Selection Statements

Specific Objectives:

a. Apply the while statement
b. Apply the do statement
c. Write simple programs to implement the while and do statements
d. Develop algorithms for solving simple repetitive problems – counter controlled and

sentinel-controlled algorithms.
e. Applies a JTextArea and a JScrollPane class to display the numbers.

Introduction to Scientific Programming Using Java Page 60

The while Repetition Statement

A repetition statement (also called a looping statement or a loop) allows the programmer to

specify that a program should repeat an action while some condition remains true. The

pseudocode statement

 While there are more items on my shopping list
 Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition "there are more items

on my shopping list" may be true or false. If it is true, then the action "Purchase next item and

cross it off my list" is performed. This action will be performed repeatedly while the condition

remains true. The statement(s) contained in the While repetition statement constitute the body of

the While repetition statement, which may be a single statement or a block. Eventually, the

condition will become false (when the last item on the shopping list has been purchased and

crossed off the list). At this point, the repetition terminates, and the first statement after the

repetition statement executes.

As an example of Java's while repetition statement, consider a program segment designed to

find the first power of 3 larger than 100. Suppose that the int variable product is initialized to

3. When the following while statement finishes executing, product contains the result:

 int product = 3;

 while (product <= 100)
 product = 3 * product;

When this while statement begins execution, the value of variable product is 3. Each iteration

of the while statement multiplies product by 3, so product takes on the values 9, 27, 81 and

243 successively. When variable product becomes 243, the while statement conditionproduct

<= 100 becomes false. This terminates the repetition, so the final value of product is 243. At this

point, program execution continues with the next statement after the while statement.

Introduction to Scientific Programming Using Java Page 61

Formulating Algorithms: Counter-Controlled Repetition

To illustrate how algorithms are developed, we will create a class TenNos (declared in

TenNos.java) to generate and sum the first ten integer numbers from 1 to 10 by default. Below is

the algorithm (pseudocode for generating and calculating the sum of ten numbers from 1 to 10.

Pseudocode: Generate an calculate the sum of the first ten numbers from 1 to 10

First Pseudocode:

Step1: Initialize variables

Step2: Generate numbers from 1 to 10

Step3: Calculate sum of the numbers

Step4: Display numbers and sum

Step5: Stop.

The algorithm may be refined further, for example step1 may be broken down such that the

variables to be initialize will be specified thus; step1 becomes:

Step1: counter = 1, sum = 0, n = 10

counter is set to 1 because we will start the counting from 1, sum will start from zero so the

summation of the numbers will be accurate. The variable n is set to 10 because the lst number in

the sequence is ten.

Step2: Generate numbers from 1 to 10

Step3: Calculate sum of the numbers

Steps 2 and 3 will be simplified and expanded further. As each number is generate the sum will
be calculated and updated. The number will continuously be generated as long as the number
generated does not exceed ten. When this happens we will terminate the loop. Hence steps 2 and
3 becomes:

Step2: while counter is less than or equal to n
Step3: add counter to sum
Step4: increment counter by 1
Step5 return to Step 2

The original step 4 and 5 from the first pseudocode becomes Step 6 and 7 repectively. The final
refinement is presented below:

Introduction to Scientific Programming Using Java Page 62

Final Refined Pseudocode:

Step1: counter = 1, sum = 0, n = 10
Step2: while counter is less than or equal to n
Step3: add counter to sum
Step4: increment counter by 1
Step5 return to Step 2
Step6: Display numbers and sum
Step7:Stop

Based on this algorithm the Java program in declared as TenNos.java was developed. The code

listing is presented below:

 1 /*
 2 * TenNos.Java
 3 * Generates the First Ten Numbers and Calculate th eir Sum
 4 *
 5 */
 6
 7
 8 import javax.swing.JOptionPane;
 9 import javax.swing.JTextArea;
10 import javax.swing.JScrollPane;
11
12 public class TenNos
13 {
14
15 public static void main(String[] args)
16 {
17 int sum = 0;
18 int counter = 1;
19 int n = 10;
20 String nos = "" ;
21
22 // Create JTextArea for displaying numbers
23 JTextArea output = new JTextArea(5, 20);
24
25 // Generate numbersn
26 while (counter <= n){
27 output.append(counter + " \n"); // add numbers to the JTextarea
28 sum += counter; // calculate sum
29 counter++; // increment counter by 1
30 } // end while i <= n
31
32 nos = " \nSum = " + sum;
33 output.append(nos);
34
35 // Append a JScrollpane to the JTextArea object
36 JScrollPane outputArea = new JScrollPane(output);
37
38 // Display numbers and their sum
39 JOptionPane.showMessageDialog(null , outputArea,

Introduction to Scientific Programming Using Java Page 63

40 "Generate and Sums Numbers 1 - 10" ,
41 JOptionPane.INFORMATION_MESSAGE) ;
42
43 } // end method main
44
45 } // end of class TenNos

Figure 8.1 TenNos.java

Lines 8 – 10 contains the import declaration of the classes we need to build our class

TenNos.java. The local variables representing the counter, the nth value and the sum are

initialized in lines 17 – 20. An object reference of class JTextArea (package javax.swing) was

created in line 23. The while loop was declared from lines 26 – 30. The while statement will

continue to iterate as long as the variable counter is less than or equal to the variable n. With

each iteration of the while statement, the value of counter is added to the text area object (output)

–line 2, sums the number in stores the result in the variable sum and increments the counter by

one and then control is returned to the while statement for re-evaluation if the value of counter is

greater the ten, the loop terminates and control is transferred to the first executable statement

after the closing curly brace enclosing the body of the while loop (at line 32)..

The sum of the numbers is then added to the string variable nos (line32) and appended to the

JTextArea object output (lines 33). The entire numbers generated and their sum is displayed

using the static object showMessageDialog of the JOptionPane class (lines 39-41). See figures

8.1a and 8.1b for a sample output run.

Figure 8.1a Figure 8.1b

Introduction to Scientific Programming Using Java Page 64

General Learning Objectives for Week9: Recursion

Specific Objectives:

a. Understand the concepts of recursion
b. Write simple recursive methods

Introduction to Scientific Programming Using Java Page 65

Recursive Concepts

The programs we have discussed thus far are generally structured as methods that call one

another in a disciplined, hierarchical manner. For some problems, however, it is useful to have a

method call itself. Such a method is known as a recursive method. A recursive method can be

called either directly or indirectly through another method.

Recursive problem-solving approaches have a number of elements in common. When a recursive

method is called to solve a problem, the method actually is capable of solving only the simplest

case(s), or base case(s). If the method is called with a base case, the method returns a result. If

the method is called with a more complex problem, the method typically divides the problem

into two conceptual piecesa piece that the method knows how to do and a piece that the method

does not know how to do. To make recursion feasible, the latter piece must resemble the original

problem, but be a slightly simpler or smaller version of it. Because this new problem looks like

the original problem, so the method calls a fresh copy of itself to work on the smaller problem

this is referred to as a recursive call and is also called the recursion step. The recursion step

normally includes a return statement, because its result will be combined with the portion of the

problem the method knew how to solve to form a result that will be passed back to the original

caller.

The recursion step executes while the original call to the method is still active (i.e., while it has

not finished executing). The recursion step can result in many more recursive calls as the method

divides each new sub-problem into two conceptual pieces. For the recursion to eventually

terminate, each time the method calls itself with a simpler version of the original problem, the

sequence of smaller and smaller problems must converge on a base case. At that point, the

method recognizes the base case and returns a result to the previous copy of the method. A

sequence of returns ensues until the original method call returns the final result to the caller.

A recursive method may call another method, which may in turn make a call back to the

recursive method. Such a process is known as an indirect recursive call or indirect recursion.

For example, method A calls method B, which makes a call back to method A. This is still

Introduction to Scientific Programming Using Java Page 66

considered recursion, because the second call to method A is made while the first call to method

A is active that is, the first call to method A has not yet finished executing (because it is waiting

on method B to return a result to i) and has not returned to method A's original caller.

Example Using Recursion: Factorials

Let us write a recursive program to perform a popular mathematical calculation. Consider the

factorial of a positive integer n, written n! (and pronounced "n factorial"), which is the product

with 1! equal to 1 and 0! defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1, which is

equal to 120.

The factorial of integer number (where number ≥ 0) can be calculated iteratively (non-

recursively) using a for statement as follows:

 factorial = 1;
 for (int counter = number; counter >= 1; counter--)
 factorial *= counter;

A recursive declaration of the factorial method is arrived at by observing the following

relationship:

For example, 5! is clearly equal to 5 · 4!, as is shown by the following equations:

5!=5.4.3.2.1
5!=5.(4.3.2.1)
5!=5.4!

The evaluation of 5! would proceed as shown in Fig. 9.1a and Fig 9.1b shows how the

succession of recursive calls proceeds until 1! (the base case) is evaluated to be 1, which

terminates the recursion. Fig 9.1c shows the values returned from each recursive call to its caller

until the final value is calculated and returned.

Introduction to Scientific Programming Using Java Page 67

Figure 9.2 uses recursion to calculate and print the factorials of the integers from 010. The recursive

method factorial (lines 8-14) first tests to determine whether a terminating condition (line 10) is

True . If number is less than or equal to 1 (the base case), factorial returns 1, no further recursion is

necessary and the method returns. If number is greater than 1, line 13 expresses the problem as the

product of number and a recursive call to factorial evaluating the factorial of number - 1 , which is

a slightly simpler problem than the original calculation, factorial(number) .

 1 /*
 2 * FactorialCalculator.java
 3 *
 4 */
 5
 6 public class FactorialCalculator {
 7 // recursive method factorial
 8 public long factorial(long number) {
 9 if (number <= 1)
10 return 1;
11 else // recursive step
12 return number * factorial(number - 1);
13
14 } // end method factorial
15
16 // output factorials from values from 0 thruogh 10
17 public void displayFactorials() {
18 // calculate the factorials from 0 through 10
19 for (int counter=0; counter <= 10; counter++)
20 System.out.printf("%d! = %d \n" , counter, factorial(counter));
21 } // end method displayFactorials
22 } // end class FactorialCalculator

Figure 9.1a Sequence of
Recursive calls

Figure9.1b values returned from

each recursive calls

Final value 120

5!=5*24=120 is returned

4!=4*6=24 is returned

3!=3*2=6 is returned

2!=2*1=2 is returned

1 is returned

Figure 9.1c

Introduction to Scientific Programming Using Java Page 68

Figure 9.2

 1 /*
 2 * FactorialTest.java
 3 *
 4 */
 5
 6 package hello;
 7
 8 public class FactorialTest {
 9
10 public static void main(String[] args) {
11 FactorialCalculator factorialCalculator = new
FactorialCalculator();
12 factorialCalculator.displayFactorials();
13 } // end method main
14
15 } // end class FactorialTest
Figure 9.3

Method displayFactorials (lines 17-22) displays the factorials of 0-10. The call to method

factorial occurs in line 21. Method factorial receives a parameter of type long and returns a

result of type long . Figure 9.2 tests our factorial and displayFactorials methods by calling

displayFactorials (line 10). As can be seen from the output of Fig. 9.2, factorial values

become large quickly. We use type long (which can represent relatively large integers) so the

program can calculate factorials greater than 12!. Unfortunately, the factorial method

produces large values so quickly that factorial values soon exceed the maximum value that can

be stored even in a long variable.

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Figure 9.4 sample output

Introduction to Scientific Programming Using Java Page 69

General Learning Objectives for Week10: Characters and Strings

Specific Objectives:

a. Describe and manipulate character type data
b. Differentiate between string and string buffer classes
c. Differentiate between equivalence and equality for string objects
d. Show how objects are passed to and returned from methods

Introduction to Scientific Programming Using Java Page 70

Fundamentals of Characters and Strings

Characters are the fundamental building blocks of Java source programs. Every program is

composed of a sequence of characters that when grouped together meaningfully are interpreted

by the computer as a series of instructions used to accomplish a task. A program may contain

character literals. A character literal is an integer value represented as a character in single

quotes. For example, 'z' represents the integer value of z , and '\n' represents the integer value

of newline. The value of a character literal is the integer value of the character in the Unicode

character set.

What are Strings?

A string is a sequence of characters treated as a single unit. A string may include letters, digits

and various special characters, such as +, - , * , / and $. A string is an object of class String .

String literals (stored in memory as String objects) are written as a sequence of characters in

double quotation marks, as in:

 "John Q. Doe" (a name)

 "9999 Main Street" (a street address)

 "Waltham, Massachusetts" (a city and state)

 "(201) 555-1212" (a telephone number)

A string may be assigned to a String reference. The declaration

 String color = "blue" ;

initializes String reference color to refer to a String object that contains the string "blue" .

Class String

Class String is used to represent strings in Java. The next several subsections cover many of

class String 's capabilities.

Introduction to Scientific Programming Using Java Page 71

 String Constructors

Class String provides constructors for initializing String objects in a variety of ways. Four of

the constructors are demonstrated in the main method of Fig. 10.1.

 1 // Fig. 10.1 StringConstructors.java
 2 // String class constructors.
 3
 4 public class StringConstructors
 5 {
 6 public static void main(String args[])
 7 {
 8 char charArray[] = { 'b' , 'i' , 'r' , 't' , 'h' , ' ' , 'd' , 'a' , 'y' };
 9 String s = new String("hello");
10
11 // use String constructors
12 String s1 = new String();
13 String s2 = new String(s);
14 String s3 = new String(charArray);
15 String s4 = new String(charArray, 6, 3);
16
17 System.out.printf(
18 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n" ,
19 s1, s2, s3, s4); // display strings
20 } // end main
21 } // end class StringConstructors

s1 =
s2 = hello
s3 = birth day
s4 = day

Line 12 instantiates a new String object using class String 's no-argument constructor and

assigns its reference to s1 . The new String object contains no characters (the empty string) and

has a length of 0.

Line 13 instantiates a new String object using class String 's constructor that takes a String

object as an argument and assigns its reference to s2 . The new String object contains the same

sequence of characters as the String object s that is passed as an argument to the constructor.

Line 14 instantiates a new String object and assigns its reference to s3 using class String 's

constructor that takes a char array as an argument. The new String object contains a copy of

the characters in the array.

Introduction to Scientific Programming Using Java Page 72

Line 15 instantiates a new String object and assigns its reference to s4 using class String 's

constructor that takes a char array and two integers as arguments. The second argument

specifies the starting position (the offset) from which characters in the array are accessed.

Remember that the first character is at position 0. The third argument specifies the number of

characters (the count) to access in the array. The new String object contains a string formed

from the accessed characters. If the offset or the count specified as an argument results in

accessing an element outside the bounds of the character array, a String-

IndexOutOfBoundsException is thrown.

String Methods length, charAt and getChars

String methods length, charAt and getChars return the length of a string, obtain the character

at a specific location in a string and retrieve a set of characters from a string as a char array,

respectively. The application in Fig. 10.2 demonstrates each of these methods.

 1 // Fig. 10.2: StringMiscellaneous.java
 2 // This application demonstrates the length, charAt and getChars
 3 // methods of the String class.
 4
 5 public class StringMiscellaneous
 6 {
 7 public static void main(String args[])
 8 {
 9 String s1 = "hello there" ;
10 char charArray[] = new char[5];
11
12 System.out.printf("s1: %s" , s1);
13
14 // test length method
15 System.out.printf("\nLength of s1: %d" , s1.length());
16
17 // loop through characters in s1 with charAt and di splay reversed
18 System.out.print("\nThe string reversed is: ");
19
20 for (int count = s1.length() - 1; count >= 0; count--)
21 System.out.printf("%s " , s1.charAt(count));
22
23 // copy characters from string into charArray
24 s1.getChars(0, 5, charArray, 0);
25 System.out.print("\nThe character array is: ");
26
27 for (char character : charArray)
28 System.out.print(character);
29
30 System.out.println();
31 } // end main

Introduction to Scientific Programming Using Java Page 73

32 } // end class StringMiscellaneous

s1: hello there
Length of s1: 11
The string reversed is: e r e h t o l l e h

The character array is: hello

Line 15 uses String method length to determine the number of characters in string s1 . Like

arrays, strings always know their own length. However, unlike arrays, you cannot access a

String 's length via a length fieldinstead you must call the String 's length method.

The for statement at lines 20-21 print the characters of the string s1 in reverse order (and

separated by spaces). String method charAt (line 21) returns the character at a specific position

in the string. Method charAt receives an integer argument that is used as the index and returns

the character at that position. Like arrays, the first element of a string is at position 0.

Line 24 uses String method getChars to copy the characters of a string into a character array.

The first argument is the starting index in the string from which characters are to be copied. The

second argument is the index that is one past the last character to be copied from the string. The

third argument is the character array into which the characters are to be copied. The last

argument is the starting index where the copied characters are placed in the target character

array. Next, line 28 prints the char array contents one character at a time.

 Comparing Strings

Class String provides several methods for comparing strings these are demonstrated in the next

two examples.

To understand what it means for one string to be greater than or less than another string, consider

the process of alphabetizing a series of last names. You would, no doubt, place "Jones" before

"Smith" because the first letter of "Jones" comes before the first letter of "Smith" in the alphabet.

But the alphabet is more than just a list of 26 letters it is an ordered set of characters. Each letter

occurs in a specific position within the set. Z is more than just a letter of the alphabet it is

specifically the twenty-sixth letter of the alphabet.

Introduction to Scientific Programming Using Java Page 74

How does the computer know that one letter comes before another? All characters are

represented in the computer as numeric codes.When the computer compares two strings, it

actually compares the numeric codes of the characters in the strings.

Figure 10.3 demonstrates String methods equals, equalsIgnoreCase, compareTo and

regionMatches and using the equality operator == to compare String objects.

Figure 10.3. String comparisons.

 1 // Fig. 10.3: StringCompare.java
 2 // String methods equals, equalsIgnoreCase, compare To and regionMatches.
 3
 4 public class StringCompare
 5 {
 6 public static void main(String args[])
 7 {
 8 String s1 = new String("hello"); // s1 is a copy of "hello"
 9 String s2 = "goodbye" ;
10 String s3 = "Happy Birthday" ;
11 String s4 = "happy birthday" ;
12
13 System.out.printf(
14 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n\n" , s1, s2, s3, s4);
15
16 // test for equality
17 if (s1 equals("hello")) // true
18 System.out.println("s1 equals \"hello\"");
19 else
20 System.out.println("s1 does not equal \"hello\"");
21
22 // test for equality with ==
23 if (s1 == "hello") // false; they are not the same object
24 System.out.println("s1 is the same object as \"hello\"");
25 else
26 System.out.println("s1 is not the same object as \"hello\"");
27
28 // test for equality (ignore case)
29 if (s3.equalsIgnoreCase(s4)) // true
30 System.out.printf("%s equals %s with case ignored\n" , s3, s4);
31 else
32 System.out.println("s3 does not equal s4");
33
34 // test compareTo
35 System.out.printf(
36 "\ns1.compareTo(s2) is %d" , s1.compareTo(s2));
37 System.out.printf(
38 "\ns2.compareTo(s1) is %d" , s2.compareTo(s1));
39 System.out.printf(
40 "\ns1.compareTo(s1) is %d" , s1.compareTo(s1));
41 System.out.printf(
42 "\ns3.compareTo(s4) is %d" , s3.compareTo(s4));
43 System.out.printf(
44 "\ns4.compareTo(s3) is %d\n\n" , s4.compareTo(s3));

Introduction to Scientific Programming Using Java Page 75

45
46 // test regionMatches (case sensitive)
47 if (s3.regionMatches(0, s4, 0, 5))
48 System.out.println("First 5 characters of s3 and s4 match");
49 else
50 System.out.println(
51 "First 5 characters of s3 and s4 do not match");
52
53 // test regionMatches (ignore case)
54 if (s3. regionMatches(true , 0, s4, 0, 5))
55 System.out.println("First 5 characters of s3 and s4 match");
56 else
57 System.out.println(
58 "First 5 characters of s3 and s4 do not match");
59 } // end main
60 } // end class StringCompare

s1 = hello
s2 = goodbye
s3 = Happy Birthday
s4 = happy birthday

s1 equals "hello"
s1 is not the same object as "hello"
Happy Birthday equals happy birthday with case igno red

s1.compareTo(s2) is 1
s2.compareTo(s1) is -1
s1.compareTo(s1) is 0
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match

The condition at line 17 uses method equals to compare string s1 and the string literal "hello"

for equality. Method equals (a method of class Object overridden in String) tests any two

objects for equality the strings contained in the two objects are identical. The method returns

true if the contents of the objects are equal, and false otherwise. The preceding condition is

True because string s1 was initialized with the string literal "hello" . Method equals uses a

lexicographical comparisonit compares the integer Unicode values that represent each character

in each string. Thus, if the string "hello" is compared with the string "HELLO" , the result is

false , because the integer representation of a lowercase letter is different from that of the

corresponding uppercase letter.

Introduction to Scientific Programming Using Java Page 76

The condition at line 23 uses the equality operator == to compare string s1 for equality with the

string literal "hello" . Operator == has different functionality when it is used to compare

references than when it is used to compare values of primitive types. When primitive-type values

are compared with ==, the result is true if both values are identical. When references are

compared with ==, the result is true if both references refer to the same object in memory. To

compare the actual contents (or state information) of objects for equality, a method must be

invoked. In the case of Strings , that method is equals . The preceding condition evaluates to

false at line 23 because the reference s1 was initialized with the statement

 s1 = new String("hello");

which creates a new String object with a copy of string literal "hello" and assigns the new

object to variable s1 . If s1 had been initialized with the statement

 s1 = "hello" ;

which directly assigns the string literal "hello" to variable s1 , the condition would be TRue.

Remember that Java treats all string literal objects with the same contents as one String object

to which there can be many references. Thus, lines 8, 17 and 23 all refer to the same String

object "hello" in memory.

If you are sorting Strings , you may compare them for equality with method equals-

IgnoreCase , which ignores whether the letters in each string are uppercase or lowercase when

performing the comparison. Thus, the string "hello" and the string "HELLO" compare as equal.

Line 29 uses String method equalsIgnoreCase to compare string s3Happy Birthday for

equality with string s4happy birthday . The result of this comparison is true because the

comparison ignores case sensitivity.

Lines 35-44 use method compareTo to compare strings. Method compareTo is declared in the

Comparable interface and implemented in the String class. Line 36 compares string s1 to string

s2 . Method compareTo returns 0 if the strings are equal, a negative number if the string that

invokes compareTo is less than the string that is passed as an argument and a positive number if

the string that invokes compareTo is greater than the string that is passed as an argument.

Introduction to Scientific Programming Using Java Page 77

Method compareTo uses a lexicographical comparisonit compares the numeric values of

corresponding characters in each string.

The condition at line 47 uses String method regionMatches to compare portions of two strings

for equality. The first argument is the starting index in the string that invokes the method. The

second argument is a comparison string. The third argument is the starting index in the

comparison string. The last argument is the number of characters to compare between the two

strings. The method returns TRue only if the specified number of characters are lexicographically

equal.

Finally, the condition at line 54 uses a five-argument version of String method regionMatches

to compare portions of two strings for equality. When the first argument is true, the method

ignores the case of the characters being compared. The remaining arguments are identical to

those described for the four-argument regionMatches method.

The second example in this section (Fig. 10.4) demonstrates String methods startsWith and

endsWith. Method main creates array strings containing the strings "started" , "starting" ,

"ended" and "ending" . The remainder of method main consists of three for statements that test

the elements of the array to determine whether they start with or end with a particular set of

characters.

 1 // Fig. 10.4: StringStartEnd.java
 2 // String methods startsWith and endsWith.
 3
 4 public class StringStartEnd
 5 {
 6 public static void main(String args[])
 7 {
 8 String strings[] = { "started" , "starting" , "ended" , "ending" };
 9
10 // test method startsWith
11 for (String string : strings)
12 {
13 if (string.startsWith("st"))
14 System.out.printf("\"%s\" starts with \"st\"\n" , string);
15 } // end for
16
17 System.out.println();
18
19 // test method startsWith starting from position 2 of string
20 for (String string : strings)

Introduction to Scientific Programming Using Java Page 78

21 {
22 if (string.startsWith("art" , 2))
23 System.out.printf(
24 "\"%s\" starts with \"art\" at position 2\n" , string);
25 } // end for
26
27 System.out.println();
28
29 // test method endsWith
30 for (String string : strings)
31 {
32 if (string.endsWith("ed"))
33 System.out.printf("\"%s\" ends with \"ed\"\n" , string);
34 } // end for
35 } // end main
36 } // end class StringStartEnd

"started" starts with "st"
"starting" starts with "st"

"started" starts with "art" at position 2
"starting" starts with "art" at position 2

"started" ends with "ed"
"ended" ends with "ed"

Introduction to Scientific Programming Using Java Page 79

General Learning Objectives for Week11: Arrays

Specific Objectives:

a. Manipulate a set of data values using arrays
b. Declare and use arrays of primitive types
c. Declare and use arrays of objects

Introduction to Scientific Programming Using Java Page 80

This week we will introduce an important topic of data structures collections of related data

items. Arrays are data structures consisting of related data items of the same type. Arrays are

fixed-length entitiesthey remain the same length once they are created, although an array variable

may be reassigned such that it refers to a new array of a different length.

 Arrays

An array is a group of variables (called elements or components) containing values that all have

the same type. Recall that types are divided into two categories primitive types and reference

types. Arrays are objects, so they are considered reference types. As you will soon see, what we

typically think of as an array is actually a reference to an array object in memory. The elements

of an array can be either primitive types or reference types. To refer to a particular element in an

array, we specify the name of the reference to the array and the position number of the element

in the array. The position number of the element is called the element's index or subscript

Figure 11.1 shows a logical representation of an integer array called c . This array contains 12

elements. A program refers to any one of these elements with an array-access expression that

includes the name of the array followed by the index of the particular element in square

brackets ([]). The first element in every array has index zero and is sometimes called the

zeroth element. Thus, the elements of array c are c[0] , c[1] , c[2] and so on. The

highest index in array c is 11, which is 1 less than 12 the number of elements in the array. Array

names follow the same conventions as other variable names.

c[0]
c[1]
c[2]
c[3]
c[4]
c[5]
c[6]
c[7]
c[8]
c[9]
c[10]
c[11]

11
-34
100
32
98

-987
112
2309

7
8
23
1

Introduction to Scientific Programming Using Java Page 81

Figure 11.1

An index must be a nonnegative integer. A program can use an expression as an index. For

example, if we assume that variable a is 5 and variable b is 6, then the statement

 c[a + b] += 2;

adds 2 to array element c[11] . Note that an indexed array name is an array-access expression.

Such expressions can be used on the left side of an assignment to place a new value into an array

element.

Let us examine array c in Fig. 7.1 more closely. The name of the array is c . Every array object

knows its own length and maintains this information in a length field. The expression c.length

accesses array c 's length field to determine the length of the array. Note that, even though the

length member of an array is public , it cannot be changed because it is a final variable. This

array's 12 elements are referred to as c[0] , c[1] , c[2] , ..., c[11] . The value of c[0]

is -45 , the value of c[1] is 6, the value of c[2] is 0, the value of c[7] is 62 and the value

of c[11] is 78. To calculate the sum of the values contained in the first three elements of array

c and store the result in variable sum, we would write

 sum = c[0] + c[1] + c[2];

To divide the value of c[6] by 2 and assign the result to the variable x , we would write

 x = c[6] / 2;

Declaring and Creating Arrays

Array objects occupy space in memory. Like other objects, arrays are created with keyword new.

To create an array object, the programmer specifies the type of the array elements and the

number of elements as part of an array-creation expression that uses keyword new. Such an

expression returns a reference that can be stored in an array variable. The following declaration

and array-creation expression create an array object containing 12 int elements and store the

array's reference in variable c :

Introduction to Scientific Programming Using Java Page 82

 int c[] = new int [12];

This expression can be used to create the array shown in Fig. 7.1. This task also can be

performed in two steps as follows:

 int c[]; // declare the array variable
 c = new int [12]; // create the array; assign to array variable

In the declaration, the square brackets following the variable name c indicate that c is a variable

that will refer to an array (i.e., the variable will store an array reference). In the assignment

statement, the array variable c receives the reference to a new array of 12 int elements. When an

array is created, each element of the array receives a default valuezero for the numeric primitive-

type elements, false for boolean elements and null for references (any nonprimitive type). As

we will soon see, we can provide specific, nondefault initial element values when we create an

array.

A program can create several arrays in a single declaration. The following String array

declaration reserves 100 elements for b and 27 elements for x :

 String b[] = new String[100], x[] = new String[27];

In this case, the class name String applies to each variable in the declaration. For readability,

we prefer to declare only one variable per declaration, as in:

 String b[] = new String[100]; // create array b
 String x[] = new String[27]; // create array x

When an array is declared, the type of the array and the square brackets can be combined at the

beginning of the declaration to indicate that all the identifiers in the declaration are array

variables. For example, the declaration

 double [] array1, array2;

indicates that array1 and array2 are "array of double " variables. The preceding declaration is

equivalent to:

Introduction to Scientific Programming Using Java Page 83

 double array1[];
 double array2[];

or

 double [] array1;
 double [] array2;

The preceding pairs of declarations are equivalentwhen only one variable is declared in each

declaration, the square brackets can be placed either after the type or after the array variable

name.

A program can declare arrays of any type. Every element of a primitive-type array contains a

value of the array's declared type. Similarly, in an array of a reference type, every element is a

reference to an object of the array's declared type. For example, every element of an int array is

an int value, and every element of a String array is a reference to a String object.

Examples Using Arrays

This section presents several examples that demonstrate declaring arrays, creating arrays,

initializing arrays and manipulating array elements.

Creating and Initializing an Array

The application of Fig. 11.2 uses keyword new to create an array of 10 int elements, which are

initially zero (the default for int variables).

Figure 11.2. Initializing the elements of an array to default values of zero.

 1 // Fig. 11.2: InitArray.java
 2 // Creating an array.
 3
 4 public class InitArray
 5 {
 6 public static void main(String args[])
 7 {
 8 int array[]; // declare array named array
 9
10 array = new int[10]; // create the space for array
11
12 System.out.printf("%s%8s\n" , "Index" , "Value"); //column headings
13
14 // output each array element's value

Introduction to Scientific Programming Using Java Page 84

15 for (int counter = 0; counter < array.length; counter++)
16 System.out.printf("%5d%8d\n" , counter, array[counter]);
17 } // end main
18 } // end class InitArray

Index Value
 0 0
 1 0
 2 0
 3 0
 4 0
 5 0
 6 0
 7 0
 8 0
 9 0

Line 8 declares array a reference capable of referring to an array of int elements. Line 10

creates the array object and assigns its reference to variable array . Line 12 outputs the column

headings. The first column contains the index (09) of each array element, and the second column

contains the default value (0) of each array element.

The for statement in lines 1516 outputs the index number (represented by counter) and value of

each array element (represented by array[counter]). Note that the loop control variable

counter is initially 0index values start at 0, so using zero-based counting allows the loop to

access every element of the array. The for 's loop-continuation condition uses the expression

array . length (line 15) to determine the length of the array. In this example, the length of the

array is 10, so the loop continues executing as long as the value of control variable counter is

less than 10. The highest index value of a 10-element array is 9, so using the less-than operator in

the loop-continuation condition guarantees that the loop does not attempt to access an element

beyond the end of the array (i.e., during the final iteration of the loop, counter is 9). We will

soon see what Java does when it encounters such an out-of-range index at execution time.

Using an Array Initializer

A program can create an array and initialize its elements with an array initializer , which is a

comma-separated list of expressions (called an initializer list) enclosed in braces ({ and }). In

Introduction to Scientific Programming Using Java Page 85

this case, the array length is determined by the number of elements in the initializer list. For

example, the declaration

 int n[] = { 10, 20, 30, 40, 50 };

creates a five-element array with index values 0, 1, 2, 3 and 4. Element n[0] is initialized to

10, n[1] is initialized to 20, and so on. This declaration does not require new to create the

array object. When the compiler encounters an array declaration that includes an initializer list,

the compiler counts the number of initializers in the list to determine the size of the array, then

sets up the appropriate new operation "behind the scenes."

The application in Fig. 7.3 initializes an integer array with 10 values (line 9) and displays the

array in tabular format. The code for displaying the array elements (lines 1415) is identical to

that in Fig. 7.2 (lines 1516).

 1 // Fig. 7.3: InitArray.java
 2 // Initializing the elements of an array with an ar ray initializer.
 3
 4 public class InitArray
 5 {
 6 public static void main(String args[])
 7 {
 8 // initializer list specifies the value for each el ement
 9 int array[] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };
10
11 System.out.printf("%s%8s\n" , "Index" , "Value"); //column headings
12
13 // output each array element's value
14 for (int counter = 0; counter < array.length; counter++)
15 System.out.printf("%5d%8d\n" , counter, array[counter]);
16 } // end main
17 } // end class InitArray

Index Value
 0 32
 1 27
 2 64
 3 18
 4 95
 5 14
 6 90
 7 70
 8 60
 9 37

Introduction to Scientific Programming Using Java Page 86

Calculating a Value to Store in Each Array Element

Some programs calculate the value stored in each array element. The application in Fig. 11.4

creates a 10-element array and assigns to each element one of the even integers from 2 to 20 (2,

4, 6, ..., 20). Then the application displays the array in tabular format. The for statement at lines

1213 calculates an array element's value by multiplying the current value of the for loop's control

variable counter by 2, then adding 2.

 1 // Fig. 11.4: InitArray.java
 2 // Calculating values to be placed into elements of an array.
 3
 4 public class InitArray
 5 {
 6 public static void main(String args[])
 7 {
 8 final int ARRAY_LENGTH = 10; // declare constant
 9 int array[] = new int [ARRAY_LENGTH]; // create array
10
11 // calculate value for each array element
12 for (int counter = 0; counter < array.length; counter++)
13 array[counter] = 2 + 2 * counter;
14
15 System.out.printf("%s%8s\n" , "Index" , "Value"); //column headings
16
17 // output each array element's value
18 for (int counter = 0; counter < array.length; counter++)
19 System.out.printf("%5d%8d\n" , counter, array[counter]);
20 } // end main
21 } // end class InitArray

Index Value
 0 2
 1 4
 2 6
 3 8
 4 10
 5 12
 6 14
 7 16
 8 18
 9 20

Line 8 uses the modifier final to declare the constant variable ARRAY_LENGTH, whose value is

10. Constant variables (also known as final variables) must be initialized before they are used

and cannot be modified thereafter. If an attempt is made to modify a final variable after it is

initialized in its declaration (as in line 8), the compiler issues the error message

Introduction to Scientific Programming Using Java Page 87

cannot assign a value to final variable variableName

If an attempt is made to access the value of a final variable before it is initialized, the compiler

issues the error message

variable variableName might not have been initialized

Summing the Elements of an Array

Often, the elements of an array represent a series of values to be used in a calculation. For

example, if the elements of an array represent exam grades, a professor may wish to total the

elements of the array and use that sum to calculate the class average for the exam. The examples

using class GradeBook later in the chapter, namely Fig. 7.14 and Fig. 7.18, use this technique.

The application in Fig. 11.5 sums the values contained in a 10-element integer array. The

program declares, creates and initializes the array at line 8. The for statement performs the

calculations. [Note: The values supplied as array initializers are often read into a program rather

than specified in an initializer list. For example, an application could input the values from a user

or from a file on disk. Reading the data into a program makes the program more reusable,

because it can be used with different sets of data.]

 1 // Fig. 11.5: SumArray.java
 2 // Computing the sum of the elements of an array.
 3
 4 public class SumArray
 5 {
 6 public static void main(String args[])
 7 {
 8 int array[] = { 87, 68, 94, 100 , 83, 78, 85, 91, 76, 87 };
 9 int total = 0;
10
11 // add each element's value to total
12 for (int counter = 0; counter < array.length; counter++)
13 total += array[counter];
14
15 System.out.printf("Total of array elements: %d\n" , total);
16 } // end main
17 } // end class SumArray

Total of array elements: 849

Introduction to Scientific Programming Using Java Page 88

Specific Objectives:

a. Understand the concepts of event driven programs

b. Understand how to place objects on a frame

c. Write simple event drive programs

General Learning Objectives: Event Driven Programs WEEK 12

Introduction to Scientific Programming Using Java Page 89

A graphical user interface (GUI) presents a user-friendly mechanism for interacting with an

application. A GUI (pronounced "GOO-ee") gives an application a distinctive "look" and "feel."

Providing different applications with consistent, intuitive user interface components allows users

to be somewhat familiar with an application, so that they can learn it more quickly and use it

more productively.

GUIs are built from GUI components. These are sometimes called controls or widgets short for

window gadgets in other languages. A GUI component is an object with which the user interacts

via the mouse, the keyboard or another form of input, such as voice recognition.

Overview of Swing Components

Though it is possible to perform input and output using the JOptionPane dialogs presented in

earlier weeks, most GUI applications require more elaborate, customized user interfaces. The

remainder of this text discusses many GUI components that enable application developers to

create robust GUIs. Figure 13.4 lists several Swing GUI components from package

javax.swing that are used to build Java GUIs. Most Swing components are pure Java

componentsthey are written, manipulated and displayed completely in Java. They are part of the

Java Foundation Classes (JFC)Java's libraries for cross-platform GUI development. Visit

java.sun.com/products/jfc for more information on JFC.

Figure 13.1 Some basic GUI components.

Component Description

JLabel Displays uneditable text or icons.

JTextField Enables user to enter data from the keyboard. Can also be used to display editable

or uneditable text.

JButton Triggers an event when clicked with the mouse.

JCheckBox Specifies an option that can be selected or not selected.

JComboBox Provides a drop-down list of items from which the user can make a selection by

Introduction to Scientific Programming Using Java Page 90

Figure 13.1 Some basic GUI components.

Component Description

clicking an item or possibly by typing into the box.

JList Provides a list of items from which the user can make a selection by clicking on

any item in the list. Multiple elements can be selected.

JPanel Provides an area in which components can be placed and organized. Can also be

used as a drawing area for graphics.

Displaying Text and Images in a Window

Our next example introduces a framework for building GUI applications. This framework uses

several concepts that you will see in many of our GUI applications. This is our first example in

which the application appears in its own window. Most windows you will create are an instance

of class JFrame or a subclass of JFrame . JFrame provides the basic attributes and behaviors of a

windowa title bar at the top of the window, and buttons to minimize, maximize and close the

window. Since an application's GUI is typically specific to the application, most of our examples

will consist of two classesa subclass of JFrame that helps us demonstrate new GUI concepts and

an application class in which main creates and displays the application's primary window.

Labeling GUI Components

A typical GUI consists of many components. In a large GUI, it can be difficult to identify the

purpose of every component unless the GUI designer provides text instructions or information

stating the purpose of each component. Such text is known as a label and is created with class

JLabela subclass of JComponent . A JLabel displays a single line of read-only text, an image, or

both text and an image. Applications rarely change a label's contents after creating it.

The application of Fig. 13.2 and Fig.13.3 demonstrates several JLabel features and presents the

framework we use in most of our GUI examples. We did not highlight the code in this example

since most of it is new. [Note: There are many more features for each GUI component than we

Introduction to Scientific Programming Using Java Page 91

can cover in our examples. To learn the complete details of each GUI component, visit its page

in the online documentation.

 1 // Fig. 13.2: LabelFrame.java
 2 // Demonstrating the JLabel class.
 3 import java.awt.FlowLayout; // specifies how components are arranged
 4 import javax.swing.JFrame; // provides basic window features
 5 import javax.swing.JLabel; // displays text and images
 6 import javax.swing.SwingConstants; // common constants used with Swing
 7 import javax.swing.Icon; // interface used to manipulate images
 8 import javax.swing.ImageIcon; // loads images
 9
10 public class LabelFrame extends JFrame
11 {
12 private JLabel label1; // JLabel with just text
13 private JLabel label2; // JLabel constructed with text and icon
14 private JLabel label3; // JLabel with added text and icon
15
16 // LabelFrame constructor adds JLabels to JFrame
17 public LabelFrame()
18 {
19 super ("Testing JLabel");
20 setLayout(new FlowLayout()); // set frame layout
21
22 // JLabel constructor with a string argument
23 label1 = new JLabel("Label with text");
24 label1.setToolTipText("This is label1");
25 add(label1); // add label1 to JFrame
26
27 // JLabel constructor with string, Icon and alignme nt arguments
28 Icon bug = new ImageIcon(getClass().getResource("bug1.gif"));
29 label2 = new JLabel("Label with text and icon" , bug,
30 SwingConstants.LEFT);
31 label2.setToolTipText("This is label2");
32 add(label2); // add label2 to JFrame
33
34 label3 = new JLabel(); // JLabel constructor no arguments
35 label3.setText("Label with icon and text at bottom");
36 label3.setIcon(bug); // add icon to JLabel
37 label3.setHorizontalTextPosition(SwingConstants.CENTER);
38 label3.setVerticalTextPosition(SwingConstants.BOTTOM);
39 label3.setToolTipText("This is label3");
40 add(label3); // add label3 to JFrame
41 } // end LabelFrame constructor
42 } // end class LabelFrame

 1 // Fig. 13.3: LabelTest.java
 2 // Testing LabelFrame.
 3 import javax.swing.JFrame;
 4
 5 public class LabelTest
 6 {

Introduction to Scientific Programming Using Java Page 92

 7 public static void main(String args[])
 8 {
 9 LabelFrame labelFrame = new LabelFrame(); // create LabelFrame
10 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 labelFrame.setSize(275 , 180); // set frame size
12 labelFrame.setVisible(true); // display frame
13 } // end main
14 } // end class LabelTest

Text Fields and an Introduction to Event Handling with Nested Classes

Normally, a user interacts with an application's GUI to indicate the tasks that the application

should perform. For example, when you write an e-mail in an e-mail application, clicking the

Send button tells the application to send the e-mail to the specified e-mail addresses. GUIs are

event driven. When the user interacts with a GUI component, the interactionknown as an

eventdrives the program to perform a task. Some common events (user interactions) that might

cause an application to perform a task include clicking a button, typing in a text field, selecting

an item from a menu, closing a window and moving the mouse. The code that performs a task in

response to an event is called an event handler and the overall process of responding to events is

known as event handling.

In this section, we introduce two new GUI components that can generate eventsJTextFields

and JPasswordFields (package javax.swing). Class JTextField extends class

JTextComponent (package javax.swing.text), which provides many features common to

Swing's text-based components. Class JPasswordField extends JTextField and adds several

Introduction to Scientific Programming Using Java Page 93

methods that are specific to processing passwords. Each of these components is a single-line area

in which the user can enter text via the keyboard. Applications can also display text in a

JTextField (see the output of Fig. 13.3). A JPasswordField shows that characters are being

typed as the user enters them, but hides the actual characters with an echo character, assuming

that they represent a password that should remain known only to the user.

When the user types data into a JTextField or a JPasswordField , then presses Enter, an event

occurs. Our next example demonstrates how a program can perform a task when that event

occurs. The techniques shown here are applicable to all GUI components that generate events.

The application of Fig. 13.2 and Fig. 13.3 uses classes JTextField and JPasswordField to

create and manipulate four text fields. When the user types in one of the text fields, then presses

Enter, the application displays a message dialog box containing the text the user typed. You can

only type in the text field that is "in focus." A component receives the focus when the user clicks

the component. This is important because the text field with the focus is the one that generates an

event when the user presses Enter. In this example, when the user presses Enter in the

JPasswordField , the password is revealed. We begin by discussing the setup of the GUI, then

discuss the event-handling code.

 1 // Fig. 13.2: TextFieldFrame.java
 2 // Demonstrating the JTextField class.
 3 import java.awt.FlowLayout;
 4 import java.awt.event.ActionListener;
 5 import java.awt.event.ActionEvent;
 6 import javax.swing.JFrame;
 7 import javax.swing.JTextField;
 8 import javax.swing.JPasswordField;
 9 import javax.swing.JOptionPane;
10
11 public class TextFieldFrame extends JFrame
12 {
13 private JTextField textField1; // text field with set size
14 private JTextField textField2; // text field constructed with text
15 private JTextField textField3; // text field with text and size
16 private JPasswordField passwordField; // password field with text
17
18 // TextFieldFrame constructor adds JTextFields to J Frame
19 public TextFieldFrame()
20 {
21 super ("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout()); // set frame layout
23
24 // construct textfield with 10 columns

Introduction to Scientific Programming Using Java Page 94

25 textField1 = new JTextField(10);
26 add(textField1); // add textField1 to JFrame
27
28 // construct textfield with default text
29 textField2 = new JTextField("Enter text here");
30 add(textField2); // add textField2 to JFrame
31
32 // construct textfield with default text and 21 col umns
33 textField3 = new JTextField("Uneditable text field" , 21);
34 textField3.setEditable(false); // disable editing
35 add(textField3); // add textField3 to JFrame
36
37 // construct passwordfield with default text
38 passwordField = new JPasswordField("Hidden text");
39 add(passwordField); // add passwordField to JFrame
40
41 // register event handlers
42 TextFieldHandler handler = new TextFieldHandler();
43 textField1.addActionListener(handler);
44 textField2.addActionListener(handler);
45 textField3.addActionListener(handler);
46 passwordField.addActionListener(handler);
47 } // end TextFieldFrame constructor
48
49 // private inner class for event handling
50 private class TextFieldHandler implements ActionListener
51 {
52 // process text field events
53 public void actionPerformed(ActionEvent event)
54 {
55 String string = "" ; // declare string to display
56
57 // user pressed Enter in JTextField textField1
58 if (event.getSource() == textField1)
59 string = String.format("textField1: %s" ,
60 event.getActionCommand());
61
62 // user pressed Enter in JTextField textField2
63 else if (event.getSource() == textField2)
64 string = String.format("textField2: %s" ,
65 event.getActionCommand());
66
67 // user pressed Enter in JTextField textField3
68 else if (event.getSource() == textField3)
69 string = String.format("textField3: %s" ,
70 event.getActionCommand());
71
72 // user pressed Enter in JTextField passwordField
73 else if (event.getSource() == passwordField)
74 string = String.format("passwordField: %s" ,
75 new String(passwordField.getPassword()));
76
77 // display JTextField content
78 JOptionPane.showMessageDialog(null , string);
79 } // end method actionPerformed
80 } // end private inner class TextFieldHandler
81 } // end class TextFieldFrame

Introduction to Scientific Programming Using Java Page 95

 1 // Fig. 13.3: TextFieldTest.java
 2 // Testing TextFieldFrame.
 3 import javax.swing.JFrame;
 4
 5 public class TextFieldTest
 6 {
 7 public static void main(String args[])
 8 {
 9 TextFieldFrame textFieldFrame = new TextFieldFrame();
10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(325 , 100); // set frame size
12 textFieldFrame.setVisible(true); // display frame
13 } // end main
14 } // end class TextFieldTest

Lines 39 import the classes and interfaces we use in this example. Class TextFieldFrame

extends JFrame and declares three JTextField variables and a JPasswordField variable (lines

13-16). Each of the corresponding text fields is instantiated and attached to the TextFieldFrame

in the constructor (lines 1947).

Introduction to Scientific Programming Using Java Page 96

Creating the GUI

Line 22 sets the layout of the TextFieldFrame to FlowLayout . Line 25 creates textField1

with 10 columns of text. The width in pixels of a text column is determined by the average width

of a character in the text field's current font. When text is displayed in a text field and the text is

wider than the text field itself, a portion of the text at the right side is not visible. If you are

typing in a text field and the cursor reaches the right edge of the text field, the text at the left

edge is pushed off the left side of the text field and will no longer be visible. Users can use the

left and right arrow keys to move through the complete text even though the entire text will not

be visible at one time. Line 26 adds textField1 to the JFrame .

Line 29 creates textField2 with the initial text "Enter text here" to display in the text field.

The width of the text field is determined by the width of the default text specified in the

constructor. Line 30 adds textField2 to the JFrame .

Line 33 creates textField3 and calls the JTextField constructor with two argumentsthe

default text "Uneditable text field" to display and the number of columns (21). The width

of the text field is determined by the number of columns specified. Line 34 uses method

setEditable (inherited by JTextField from class JTextComponent) to make the text field

uneditablei.e., the user cannot modify the text in the text field. Line 35 adds textField3 to the

JFrame .

Line 38 creates passwordField with the text "Hidden text" to display in the text field. The

width of the text field is determined by the width of the default text. When you execute the

application, notice that the text is displayed as a string of asterisks. Line 39 adds passwordField

to the JFrame .

Steps Required to Set Up Event Handling for a GUI Component

This example should display a message dialog containing the text from a text field when the user

presses Enter in that text field. Before an application can respond to an event for a particular GUI

component, you must perform several coding steps:

Introduction to Scientific Programming Using Java Page 97

1. Create a class that represents the event handler.

2. Implement an appropriate interface, known as an event-listener interface, in the class from Step

1.

3. Indicate that an object of the class from Steps 1 and 2 should be notified when the event occurs.

This is known as registering the event handler.

Using a Nested Class to Implement an Event Handler

All the classes discussed so far were so-called top-level classesthat is, the classes were not

declared inside another class. Java allows you to declare classes inside other classesthese are

called nested classes. Nested classes can be static or non-static . Non-static nested classes

are called inner classes and are frequently used for event handling.

Before an object of an inner class can be created, there must first be an object of the top-level

class that contains the inner class. This is required because an inner-class object implicitly has a

reference to an object of its top-level class. There is also a special relationship between these

objectsthe inner-class object is allowed to directly access all the instance variables and methods

of the outer class. A nested class that is static does not require an object of its top-level class

and does not implicitly have a reference to an object of the top-level class.

 The event handling in this example is performed by an object of the private inner class

TextFieldHandler (lines 5080). This class is private because it will be used only to create

event handlers for the text fields in top-level class TextFieldFrame . As with other members of a

class, inner classes can be declared public , protected or private .

GUI components can generate a variety of events in response to user interactions. Each event is

represented by a class and can be processed only by the appropriate type of event handler. In

most cases, the events a GUI component supports are described in the Java API documentation

for that component's class and its superclasses. When the user presses Enter in a JTextField or

JPasswordField , the GUI component generates an ActionEvent (package java.awt.event).

Such an event is processed by an object that implements the interface ActionListener (package

Introduction to Scientific Programming Using Java Page 98

java.awt.event). The information discussed here is available in the Java API documentation

for classes JTextField and ActionEvent . Since JPasswordField is a subclass of JTextField ,

JPasswordField supports the same events.

To prepare to handle the events in this example, inner class TextFieldHandler implements

interface ActionListener and declares the only method in that interfaceaction-Performed

(lines 53-79). This method specifies the tasks to perform when an ActionEvent occurs. So inner

class TextFieldHandler satisfies Steps 1 and 2 listed earlier in this section. We'll discuss the

details of method actionPerformed shortly.

Registering the Event Handler for Each Text Field

In the TextFieldFrame constructor, line 42 creates a TextFieldHandler object and assigns it to

variable handler . This object's actionPerformed method will be called automatically when the

user presses Enter in any of the GUI's text fields. However, before this can occur, the program

must register this object as the event handler for each text field. Lines 4346 are the event-

registration statements that specify handler as the event handler for the three JTextFields and

the JPasswordField . The application calls JTextField method addActionListener to register

the event handler for each component. This method receives as its argument an ActionListener

object, which can be an object of any class that implements ActionListener . The object

handler is an ActionListener , because class TextFieldHandler implements

ActionListener . After lines 43-46 execute, the object handler listens for events. Now, when the

user presses Enter in any of these four text fields, method actionPerformed (line 5379) in class

TextFieldHandler is called to handle the event. If an event handler is not registered for a

particular text field, the event that occurs when the user presses Enter in that text field is

consumedi.e., it is simply ignored by the application.

Details of Class TextFieldHandler's actionPerformed Method

In this example, we are using one event-handling object's actionPerformed method (lines 5379)

to handle the events generated by four text fields. Since we'd like to output the name of each text

field's instance variable for demonstration purposes, we must determine which text field

generated the event each time actionPerformed is called. The GUI component with which the

Introduction to Scientific Programming Using Java Page 99

user interacts is the event source. In this example, the event source is one of the text fields or the

password field. When the user presses Enter while one of these GUI components has the focus,

the system creates a unique ActionEvent object that contains information about the event that

just occurred, such as the event source and the text in the text field. The system then passes this

ActionEvent object in a method call to the event listener's actionPerformed method. In this

example, we display some of that information in a message dialog. Line 55 declares the String

that will be displayed. The variable is initialized with the empty stringa string containing no

characters. The compiler requires this in case none of the branches of the nested if in lines 5875

executes.

ActionEvent method getSource (called in lines 58, 63, 68 and 73) returns a reference to the

event source. The condition in line 58 asks, "Is the event source textField1 ?" This condition

compares the references on either side of the == operator to determine whether they refer to the

same object. If they both refer to textField1 , then the program knows that the user pressed

Enter in textField1 . In this case, lines 59-60 create a String containing the message that line

78 will display in a message dialog. Line 60 uses ActionEvent method getActionCommand to

obtain the text the user typed in the text field that generated the event.

If the user interacted with the JPasswordField , lines 7475 use JPasswordField method

getPassword to obtain the password and create the String to display. This method returns the

password as an array of type char that is used as an argument to a String constructor to create a

string containing the characters in the array.

Introduction to Scientific Programming Using Java Page 100

General Learning Objectives for Week14: Inheritance

Specific Objectives:

a. Understand the concepts of inheritance

b. Understand of the is-a and has-a relationship in inheritance hierarchy

c. Write simple Java programs implementing inheritance

Introduction to Scientific Programming Using Java Page 101

Introduction to Inheritance

This week we will discuss one of the primary features of object-oriented programming (OOP)

that is inheritance, which is a form of software reuse in which a new class is created by

absorbing an existing class's members and embellishing them with new or modified capabilities.

With inheritance, programmers save time during program development by reusing proven and

debugged high-quality software. This also increases the likelihood that a system will be

implemented effectively.

When creating a class, rather than declaring completely new members, the programmer can

designate that the new class should inherit the members of an existing class. The existing class is

called the superclass, and the new class is the subclass. (The C++ programming language refers

to the superclass as the base class and the subclass as the derived class.) Each subclass can

become the superclass for future subclasses.

A subclass normally adds its own fields and methods. Therefore, a subclass is more specific than

its superclass and represents a more specialized group of objects. Typically, the subclass exhibits

the behaviors of its superclass and additional behaviors that are specific to the subclass.

The direct superclass is the superclass from which the subclass explicitly inherits. An indirect

superclass is any class above the direct superclass in the class hierarchy, which defines the

inheritance relationships between classes. In Java, the class hierarchy begins with class Object

(in package java.lang), which every class in Java directly or indirectly extends (or "inherits

from"). In the case of single inheritance, a class is derived from one direct superclass. Java,

unlike C++, does not support multiple inheritance (which occurs when a class is derived from

more than one direct superclass).

Experience in building software systems indicates that significant amounts of code deal with

closely-related special cases. When programmers are preoccupied with special cases, the details

can obscure the big picture. With object-oriented programming, programmers focus on the

commonalities among objects in the system rather than on the special cases.

Introduction to Scientific Programming Using Java Page 102

We distinguish between the "is-a" relationship and the "has-a" relationship . "Is-a" represents

inheritance. In an "is-a" relationship, an object of a subclass can also be treated as an object of its

superclass. For example, a car is a vehicle. By contrast, "has-a" represents composition. In a

"has-a" relationship, an object contains one or more object references as members. For example,

a car has a steering wheel (and a car object has a reference to a steering wheel object).

New classes can inherit from classes in class libraries. Organizations develop their own class

libraries and can take advantage of others available worldwide. Some day, most new software

likely will be constructed from standardized reusable components, just as automobiles and

most computer hardware are constructed today. This will facilitate the development of more

powerful, abundant and economical software.

Superclasses and Subclasses

Often, an object of one class "is an" object of another class as well. For example, in geometry, a

rectangle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, in Java, class

Rectangle can be said to inherit from class Quadrilateral . In this context, class

Quadrilateral is a superclass and class Rectangle is a subclass. A rectangle is a specific type

of quadrilateral, but it is incorrect to claim that every quadrilateral is a rectanglethe quadrilateral

could be a parallelogram or some other shape. Figure 14.1 lists several simple examples of

superclasses and subclassesnote that superclasses tend to be "more general" and subclasses tend

to be "more specific."

Figure 14.1. Inheritance examples.

Superclass Subclasses

Student GraduateStudent , UndergraduateStudent

Shape Circle , TRiangle , Rectangle

Loan CarLoan , HomeImprovementLoan , MortgageLoan

Employee Faculty , Staff

BankAccount CheckingAccount , SavingsAccount

Introduction to Scientific Programming Using Java Page 103

Because every subclass object "is an" object of its superclass, and one superclass can have many

subclasses, the set of objects represented by a superclass is typically larger than the set of objects

represented by any of its subclasses. For example, the superclass Vehicle represents all vehicles,

including cars, trucks, boats, bicycles and so on. By contrast, subclass Car represents a smaller,

more specific subset of vehicles.

Inheritance relationships form tree-like hierarchical structures. A superclass exists in a

hierarchical relationship with its subclasses. When classes participate in inheritance

relationships, they become "affiliated" with other classes. A class becomes either a superclass,

supplying members to other classes, or a subclass, inheriting its members from other classes. In

some cases, a class is both a superclass and a subclass.

Let us develop a sample class hierarchy also called an inheritance hierarchy. A university

community has thousands of members, including employees, students and alumni. Employees

are either faculty members or staff members. Faculty members are either administrators (such as

deans and department chairpersons) or teachers. Note that the hierarchy could contain many

other classes. For example, students can be graduate or undergraduate students. Undergraduate

students can be freshmen, sophomores, juniors or seniors.

Now consider the Shape inheritance hierarchy. This hierarchy begins with superclass Shape ,

which is extended by subclasses TwoDimensionalShape and ThreeDimensionalShapeShapes

are either TwoDimensionalShapes or ThreeDimensionalShapes . The third level of this

hierarchy contains some more specific types of TwoDimensionalShapes and

THReeDimensionalShapes . From the bottom of the hierarchy to the topmost superclass in this

class hierarchy to identify several "is-a" relationships. For instance, a triangle is a

TwoDimensionalShape and is a Shape , while a Sphere is a ThreeDimensionalShape and is a

Shape . Note that this hierarchy could contain many other classes. For example, ellipses and

trapezoids are TwoDimensionalShapes .

Not every class relationship is an inheritance relationship. The "has-a" relationship, in which

classes have members that are references to objects of other classes. Such relationships create

classes by composition of existing classes. For example, given the classes Employee , BirthDate

Introduction to Scientific Programming Using Java Page 104

and TelephoneNumber , it is improper to say that an Employee is a BirthDate or that an

Employee is a TelephoneNumber . However, an Employee has a BirthDate , and an Employee

has a TelephoneNumber .

It is possible to treat superclass objects and subclass objects similarly their commonalities are

expressed in the members of the superclass. Objects of all classes that extend a common

superclass can be treated as objects of that superclass (i.e., such objects have an "is-a"

relationship with the superclass). However, superclass objects cannot be treated as objects of

their subclasses. For example, all cars are vehicles, but not all vehicles are cars (the other

vehicles could be trucks, planes or bicycles, for example).

One problem with inheritance is that a subclass can inherit methods that it does not need or

should not have. Even when a superclass method is appropriate for a subclass, that subclass often

needs a customized version of the method. In such cases, the subclass can override (redefine)

the superclass method with an appropriate implementation, as we will see often in the chapter's

code examples.

Relationship between Superclasses and Subclasses

In this section, we use an inheritance hierarchy containing types of employees in a company's

payroll application to discuss the relationship between a superclass and its subclass. In this

company, commission employees (who will be represented as objects of a superclass) are paid a

percentage of their sales, while base-salaried commission employees (who will be represented as

objects of a subclass) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between commission employees and base-salaried

commission employees into five examples. The first example declares class

CommissionEmployee , which directly inherits from class Object and declares as private

instance variables a first name, last name, social security number, commission rate and gross

(i.e., total) sales amount.

The second example declares class BasePlusCommissionEmployee , which also directly inherits

from class Object and declares as private instance variables a first name, last name, social

Introduction to Scientific Programming Using Java Page 105

security number, commission rate, gross sales amount and base salary. We create the latter class

by writing every line of code the class requireswe will soon see that it is much more efficient to

create this class by inheriting from class CommissionEmployee .

The third example declares a separate BasePlusCommissionEmployee2 class that extends class

CommissionEmployee (i.e., a BasePlusCommissionEmployee2 is a CommissionEmployee who

also has a base salary) and attempts to access class CommissionEmployee 's private

membersthis results in compilation errors, because the subclass cannot access the superclass's

private instance variables.

The fourth example shows that if CommissionEmployee 's instance variables are declared as

protected , a BasePlusCommissionEmployee3 class that extends class CommissionEmployee2

can access that data directly. For this purpose, we declare class CommissionEmployee2 with

protected instance variables. Both of the BasePlusCommissionEmployee classes contain

identical functionality, but we show how the class BasePlusCommissionEmployee3 is easier to

create and manage.

After we discuss the convenience of using protected instance variables, we create the fifth

example, which sets the CommissionEmployee instance variables back to private in class

CommissionEmployee3 to enforce good software engineering. Then we show how a separate

BasePlusCommissionEmployee4 class, which extends class CommissionEmployee3 , can use

CommissionEmployee3 's public methods to manipulate CommissionEmployee3 's private

instance variables

 Creating and Using a CommissionEmployee Class

We begin by declaring class CommissionEmployee (Fig. 14.1). Line 4 begins the class

declaration and indicates that class CommissionEmployee extends (i.e., inherits from) class

Object (from package java.lang). Java programmers use inheritance to create classes from

existing classes. In fact, every class in Java (except Object) extends an existing class. Because

class CommissionEmployee extends class Object , class CommissionEmployee inherits the

methods of class Object class Object does not have any fields. In fact, every Java class directly

Introduction to Scientific Programming Using Java Page 106

or indirectly inherits Object 's methods. If a class does not specify that it extends another class,

the new class implicitly extends Object . For this reason, programmers typically do not include

"extends Object " in their codewe do so in this example for demonstration purposes.

 1 // Fig. 14.1 CommissionEmployee.java
 2 // CommissionEmployee class represents a commission employee.
 3
 4 public class CommissionEmployee extends Object
 5 {
 6 private String firstName;
 7 private String lastName;
 8 private String socialSecurityNumber;
 9 private double grossSales; // gross weekly sales
10 private double commissionRate; // commission percentage
11
12 // five-argument constructor
13 public CommissionEmployee(String first, String last, Str ing ssn,
14 double sales, double rate)
15 {
16 // implicit call to Object constructor occurs here
17 firstName = first;
18 lastName = last;
19 socialSecurityNumber = ssn;
20 setGrossSales(sales); // validate and store gross sales
21 setCommissionRate(rate); // validate and store commission rate
22 } // end five-argument CommissionEmployee constructor
23
24 // set first name
25 public void setFirstName(String first)
26 {
27 firstName = first;
28 } // end method setFirstName
29
30 // return first name
31 public String getFirstName()
32 {
33 return firstName;
34 } // end method getFirstName
35
36 // set last name
37 public void setLastName(String last)
38 {
39 lastName = last;
40 } // end method setLastName
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 } // end method getLastName
47
48 // set social security number
49 public void setSocialSecurityNumber(String ssn)
50 {

Introduction to Scientific Programming Using Java Page 107

51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber
53
54 // return social security number
55 public String getSocialSecurityNumber()
56 {
57 return socialSecurityNumber;
58 } // end method getSocialSecurityNumber
59
60 // set gross sales amount
61 public void setGrossSales(double sales)
62 {
63 grossSales = (sales < 0.0) ? 0.0 : sales;
64 } // end method setGrossSales
65
66 // return gross sales amount
67 public double getGrossSales()
68 {
69 return grossSales;
70 } // end method getGrossSales
71
72 // set commission rate
73 public void setCommissionRate(double rate)
74 {
75 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0 ;
76 } // end method setCommissionRate
77
78 // return commission rate
79 public double getCommissionRate()
80 {
81 return commissionRate;
82 } // end method getCommissionRate
83
84 // calculate earnings
85 public double earnings()
86 {
87 return commissionRate * grossSales;
88 } // end method earnings
89
90 // return String representation of CommissionEmploy ee object
91 public String toString()
92 {
93 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f" ,
94 "commission employee" , firstName, lastName,
95 "social security number" , socialSecurityNumber,
96 "gross sales" , grossSales,
97 "commission rate" , commissionRate);
98 } // end method toString
99 } // end class CommissionEmployee

The public services of class CommissionEmployee include a constructor (lines 13-22) and

methods earnings (lines 85-88) and toString (lines 9198). Lines 25-82 declare public get and

set methods for manipulating the class's instance variables (declared in lines 6-10) firstName ,

lastName , socialSecurityNumber , grossSales and commissionRate . Class

Introduction to Scientific Programming Using Java Page 108

CommissionEmployee declares each of its instance variables as private , so objects of other

classes cannot directly access these variables. Declaring instance variables as private and

providing get and set methods to manipulate and validate the instance variables helps enforce

good software engineering. Methods setGrossSales and setCommissionRate , for example,

validate their arguments before assigning the values to instance variables grossSales and

commissionRate , respectively.

Constructors are not inherited, so class CommissionEmployee does not inherit class Object 's

constructor. However, class CommissionEmployee 's constructor calls class Object 's constructor

implicitly. In fact, the first task of any subclass constructor is to call its direct superclass's

constructor, either explicitly or implicitly (if no constructor call is specified), to ensure that the

instance variables inherited from the superclass are initialized properly. The syntax for calling a

superclass constructor explicitly is discussed later on in the test. If the code does not include an

explicit call to the superclass constructor, Java implicitly calls the superclass's default or no-

argument constructor. The comment in line 16 of Fig. 14.1 indicates where the implicit call to

the superclass Object 's default constructor is made (the programmer does not write the code for

this call). Object 's default (empty) constructor does nothing. Note that even if a class does not

have constructors, the default constructor that the compiler implicitly declares for the class will

call the superclass's default or no-argument constructor.

After the implicit call to Object 's constructor occurs, lines 17-21 of CommissionEmployee 's

constructor assign values to the class's instance variables. Note that we do not validate the values

of arguments first , last and ssn before assigning them to the corresponding instance

variables. While validating data is good software engineering, including extensive validation in

this class could add a potentially large amount of code that would obscure the focus of this

example. We certainly could validate the first and last namesperhaps by ensuring that they are of

a reasonable length. Similarly, a social security number could be validated to ensure that it

contains nine digits, with or without dashes (e.g., 123-45-6789 or 123456789).

Method earnings (lines 8588) calculates a CommissionEmployee 's earnings. Line 87 multiplies

the commissionRate by the grossSales and returns the result.

Introduction to Scientific Programming Using Java Page 109

Method toString (lines 91-98) is special it is one of the methods that every class inherits

directly or indirectly from class Object , which is the root of the Java class hierarchy. Method

toString returns a String representing an object. This method is called implicitly by a program

whenever an object must be converted to a string representation, such as when an object is output

by printf or String method format using the %s format specifier. Class Object 's toString

method returns a String that includes the name of the object's class. It is primarily a placeholder

that can be overridden by a subclass to specify an appropriate string representation of the data in

a subclass object. Method toString of class CommissionEmployee overrides (redefines) class

Object 's toString method. When invoked, CommissionEmployee 's toString method uses

String method format to return a String containing information about the

CommissionEmployee . We use format specifier %.2f to format both the grossSales and the

commissionRate with two digits of precision to the right of the decimal point. To override a

superclass method, a subclass must declare a method with the same signature (method name,

number of parameters and parameter types) as the superclass methodObject 's toString method

takes no parameters, so CommissionEmployee declares toString with no parameters.

It is a syntax error to override a method with a more restricted access modifiera public method

of the superclass cannot become a protected or private method in the subclass; a protected

method of the superclass cannot become a private method in the subclass. Doing so would

break the "is-a" relationship in which it is required that all subclass objects be able to respond to

method calls that are made to public methods declared in the superclass. If a public method

could be overridden as a protected or private method, the subclass objects would not be able

to respond to the same method calls as superclass objects. Once a method is declared public in a

superclass, the method remains public for all that class's direct and indirect subclasses.

Figure 14.2 tests class CommissionEmployee . Lines 910 instantiate a CommissionEmployee

object and invoke CommissionEmployee 's constructor (lines 13-22 of Fig. 14.1) to initialize it

with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the social security

number, 10000 as the gross sales amount and .06 as the commission rate. Lines 1524 use

CommissionEmployee 's get methods to retrieve the object's instance variable values for output.

Lines 26-27 invoke the object's methods setGrossSales and setCommissionRate to change the

Introduction to Scientific Programming Using Java Page 110

values of instance variables grossSales and commissionRate . Lines 29-30 output the string

representation of the updated CommissionEmployee . Note that when an object is output using the

%s format specifier, the object's toString method is invoked implicitly to obtain the object's

string representation.

 1 // Fig. 14.2: CommissionEmployeeTest.java
 2 // Testing class CommissionEmployee.
 3
 4 public class CommissionEmployeeTest
 5 {
 6 public static void main(String args[])
 7 {
 8 // instantiate CommissionEmployee object
 9 CommissionEmployee employee = new CommissionEmployee(
10 "Sue" , "Jones" , "222-22-2222" , 10000 , .06);
11
12 // get commission employee data
13 System.out.println(
14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n" , "First name is" ,
16 employee.getFirstName());
17 System.out.printf("%s %s\n" , "Last name is" ,
18 employee.getLastName());
19 System.out.printf("%s %s\n" , "Social security number is" ,
20 employee.getSocialSecurityNumber());
21 System.out.printf("%s %.2f\n" , "Gross sales is" ,
22 employee.getGrossSales());
23 System.out.printf("%s %.2f\n" , "Commission rate is" ,
24 employee.getCommissionRate());
25
26 employee.setGrossSales(500); // set gross sales
27 employee.setCommissionRate(.1); // set commission rate
28
29 System.out.printf("\n%s:\n\n%s\n" ,
30 "Updated employee information obtained by toString" , employee);
31 } // end main
32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00
commission rate: 0.10

Introduction to Scientific Programming Using Java Page 111

CommissionEmployeeBasePlusCommissionEmployee Inheritance Hierarchy Using private
Instance Variables

We now reexamine our hierarchy once more, this time using the best software engineering

practices. Class CommissionEmployee3 (Fig. 14.3) declares instance variables firstName ,

lastName , socialSecurityNumber , grossSales and commissionRate as private (lines 6-10)

and provides public methods setFirstName , getFirstName , setLastName , getLastName ,

setSocialSecurityNumber , getSocialSecurityNumber , setGrossSales , getGrossSales ,

setCommissionRate , getCommissionRate , earnings and toString for manipulating these

values. Note that methods earnings (lines 8588) and toString (lines 91-98) use the class's get

methods to obtain the values of its instance variables. If we decide to change the instance

variable names, the earnings and toString declarations will not require modificationonly the

bodies of the get and set methods that directly manipulate the instance variables will need to

change. Note that these changes occur solely within the superclassno changes to the subclass are

needed. Localizing the effects of changes like this is a good software engineering practice.

Subclass BasePlusCommissionEmployee4 (Fig. 14.4) inherits CommissionEmployee3 's non-

private methods and can access the private superclass members via those methods.

 1 // Fig. 14.3: CommissionEmployee3.java
 2 // CommissionEmployee3 class represents a commissio n employee.
 3
 4 public class CommissionEmployee3
 5 {
 6 private String firstName;
 7 private String lastName;
 8 private String socialSecurityNumber;
 9 private double grossSales; // gross weekly sales
10 private double commissionRate; // commission percentage
11
12 // five-argument constructor
13 public CommissionEmployee3(String first, String last, St ring ssn,
14 double sales, double rate)
15 {
16 // implicit call to Object constructor occurs here
17 firstName = first;
18 lastName = last;
19 socialSecurityNumber = ssn;
20 setGrossSales(sales); // validate and store gross sales
21 setCommissionRate(rate); // validate and store commission rate
22 } // end five-argument CommissionEmployee3 constructo r
23

Introduction to Scientific Programming Using Java Page 112

24 // set first name
25 public void setFirstName(String first)
26 {
27 firstName = first;
28 } // end method setFirstName
29
30 // return first name
31 public String getFirstName()
32 {
33 return firstName;
34 } // end method getFirstName
35
36 // set last name
37 public void setLastName(String last)
38 {
39 lastName = last;
40 } // end method setLastName
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 } // end method getLastName
47
48 // set social security number
49 public void setSocialSecurityNumber(String ssn)
50 {
51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber
53
54 // return social security number
55 public String getSocialSecurityNumber()
56 {
57 return socialSecurityNumber;
58 } // end method getSocialSecurityNumber
59
60 // set gross sales amount
61 public void setGrossSales(double sales)
62 {
63 grossSales = (sales < 0.0) ? 0.0 : sales;
64 } // end method setGrossSales
65
66 // return gross sales amount
67 public double getGrossSales()
68 {
69 return grossSales;
70 } // end method getGrossSales
71
72 // set commission rate
73 public void setCommissionRate(double rate)
74 {
75 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0 ;
76 } // end method setCommissionRate
77
78 // return commission rate
79 public double getCommissionRate()
80 {

Introduction to Scientific Programming Using Java Page 113

81 return commissionRate;
82 } // end method getCommissionRate
83
84 // calculate earnings
85 public double earnings()
86 {
87 return getCommissionRate() * getGrossSales();
88 } // end method earnings
89
90 // return String representation of CommissionEmploy ee3 object
91 public String toString()
92 {
93 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f" ,
94 "commission employee" , getFirstName(), getLastName(),
95 "social security number" , getSocialSecurityNumber(),
96 "gross sales" , getGrossSales(),
97 "commission rate" , getCommissionRate());
98 } // end method toString
99 } // end class CommissionEmployee3

 1 // Fig. 14.4: BasePlusCommissionEmployee4.java
 2 //BasePlusCommissionEmployee4 class inherits from C ommissionEmployee3 and
 3 // accesses CommissionEmployee3's private data via CommissionEmployee3's
 4 // public methods.
 5
 6 public class BasePlusCommissionEmployee4 extends CommissionEmployee3
 7 {
 8 private double baseSalary; // base salary per week
 9
10 // six-argument constructor
11 public BasePlusCommissionEmployee4(String first, String last,
12 String ssn, double sales, double rate, double salary)
13 {
14 super (first, last, ssn, sales, rate);
15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee4 con structor
17
18 // set base salary
19 public void setBaseSalary(double salary)
20 {
21 baseSalary = (salary < 0.0) ? 0.0 : salary;
22 } // end method setBaseSalary
23
24 // return base salary
25 public double getBaseSalary()
26 {
27 return baseSalary;
28 } // end method getBaseSalary
29
30 // calculate earnings
31 public double earnings()
32 {
33 return getBaseSalary() + super .earnings();
34 } // end method earnings
35
36 // return String representation of BasePlusCommissi onEmployee4
37 public String toString()

Introduction to Scientific Programming Using Java Page 114

38 {
39 return String.format("%s %s\n%s: %.2f" , "base-salaried" ,
40 super .toString(), "base salary" , getBaseSalary());
41 } // end method toString
42 } // end class BasePlusCommissionEmployee4

Class BasePlusCommissionEmployee4 (Fig. 14.3) has several changes to its method

implementations that distinguish it from class BasePlusCommissionEmployee3 (Fig. 14.3).

Methods earnings (Fig. 14.2, lines 31-34) and toString (lines 37-41) each invoke method

getBaseSalary to obtain the base salary value, rather than accessing baseSalary directly. If we

decide to rename instance variable baseSalary , only the bodies of method setBaseSalary and

getBaseSalary will need to change.

Class BasePlusCommissionEmployee4 's earnings method (Fig. 14.2, lines 31-34) overrides

class CommissionEmployee3 's earnings method (Fig.14.4 lines 85-88) to calculate the earnings

of a base-salaried commission employee. The new version obtains the portion of the employee's

earnings based on commission alone by calling CommissionEmployee3 's earnings method with

the expression super.earnings() (Fig. 14.3, line 33). BasePlusCommissionEmployee4 's

earnings method then adds the base salary to this value to calculate the total earnings of the

employee. Note the syntax used to invoke an overridden superclass method from a subclassplace

the keyword super and a dot (.) separator before the superclass method name. This method

invocation is a good software-engineering practice: Recall from Software Engineering

Observation 8.5 that if a method performs all or some of the actions needed by another method,

call that method rather than duplicate its code. By having BasePlusCommissionEmployee4 's

earnings method invoke CommissionEmployee3 's earnings method to calculate part of a

BasePlusCommissionEmployee4 object's earnings, we avoid duplicating the code and reduce

code-maintenance problems.

Introduction to Scientific Programming Using Java Page 115

General Learning Objectives for Week15: Polymorphism

Specific Objectives:

a. Understand the concepts of polymorphism using class hierarchy

b. Know how to create abstract classes

c. Write abstract methods

d. Write simple programs implementing polymorphism

Introduction to Scientific Programming Using Java Page 116

Polymorphism

We now continue our study of object-oriented programming by explaining and demonstrating

polymorphism with inheritance hierarchies. Polymorphism enables us to "program in the

general" rather than "program in the specific." In particular, polymorphism enables us to write

programs that process objects that share the same superclass in a class hierarchy as if they are all

objects of the superclass.

Consider the following example of polymorphism. Suppose we create a program that simulates

the movement of several types of animals for a biological study. Classes Fish , Frog and Bird

represent the three types of animals under investigation. Imagine that each of these classes

extends superclass Animal , which contains a method move and maintains an animal's current

location as x-y coordinates. Each subclass implements method move. Our program maintains an

array of references to objects of the various Animal subclasses. To simulate the animals'

movements, the program sends each object the same message once per secondnamely, move.

However, each specific type of Animal responds to a move message in a unique waya Fish might

swim three feet, a Frog might jump five feet and a Bird might fly ten feet. The program issues

the same message (i.e., move) to each animal object generically, but each object knows how to

modify its x-y coordinates appropriately for its specific type of movement. Relying on each

object to know how to "do the right thing" (i.e., do what is appropriate for that type of object) in

response to the same method call is the key concept of polymorphism. The same message (in this

case, move) sent to a variety of objects has "many forms" of resultshence the term polymorphism.

With polymorphism, we can design and implement systems that are easily extensiblenew classes

can be added with little or no modification to the general portions of the program, as long as the

new classes are part of the inheritance hierarchy that the program processes generically. The only

parts of a program that must be altered to accommodate new classes are those that require direct

knowledge of the new classes that the programmer adds to the hierarchy. For example, if we

extend class Animal to create class Tortoise (which might respond to a move message by

crawling one inch), we need to write only the Tortoise class and the part of the simulation that

Introduction to Scientific Programming Using Java Page 117

instantiates a Tortoise object. The portions of the simulation that process each Animal

generically can remain the same.

This chapter has several key parts. First, we discuss common examples of polymorphism. We

then provide a live-code example demonstrating polymorphic behavior. As you will soon see,

you will use superclass references to manipulate both superclass objects and subclass objects

polymorphically.

We then present a case study that revisits the employee hierarchy of Section 9.4.5. We develop a

simple payroll application that polymorphically calculates the weekly pay of several different

types of employees using each employee's earnings method. Though the earnings of each type

of employee are calculated in a specific way, polymorphism allows us to process the employees

"in the general." In the case study, we enlarge the hierarchy to include two new

classesSalariedEmployee (for people paid a fixed weekly salary) and HourlyEmployee (for

people paid an hourly salary and so-called time-and-a-half for overtime). We declare a common

set of functionality for all the classes in the updated hierarchy in a so-called abstract class,

Employee , from which classes SalariedEmployee , HourlyEmployee and CommissionEmployee

inherit directly and class BasePlusCommissionEmployee4 inherits indirectly. As you will soon

see, when we invoke each employee's earnings method off a superclass Employee reference,

the correct earnings calculation is performed due to Java's polymorphic capabilities.

Occasionally, when performing polymorphic processing, we need to program "in the specific."

Our Employee case study demonstrates that a program can determine the type of an object at

execution time and act on that object accordingly. In the case study, we use these capabilities to

determine whether a particular employee object is a BasePlusCommissionEmployee . If so, we

increase that employee's base salary by 10%.

The chapter continues with an introduction to Java interfaces. An interface describes a set of

methods that can be called on an object, but does not provide concrete implementations for the

methods. Programmers can declare classes that implement (i.e., provide concrete

implementations for the methods of) one or more interfaces. Each interface method must be

declared in all the classes that implement the interface. Once a class implements an interface, all

Introduction to Scientific Programming Using Java Page 118

objects of that class have an is-a relationship with the interface type, and all objects of the class

are guaranteed to provide the functionality described by the interface. This is true of all

subclasses of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unrelated

classes. This allows objects of unrelated classes to be processed polymorphicallyobjects of

classes that implement the same interface can respond to the same method calls. To demonstrate

creating and using interfaces, we modify our payroll application to create a general accounts

payable application that can calculate payments due for company employees and invoice

amounts to be billed for purchased goods. As you will see, interfaces enable polymorphic

capabilities similar to those possible with inheritance.

 Polymorphism Examples

We now consider several additional examples of polymorphism. If class Rectangle is derived

from class Quadrilateral , then a Rectangle object is a more specific version of a

Quadrilateral object. Any operation (e.g., calculating the perimeter or the area) that can be

performed on a Quadrilateral object can also be performed on a Rectangle object. These

operations can also be performed on other Quadrilateral s, such as Square s, Parallelogram s

and trapezoid s. The polymorphism occurs when a program invokes a method through a

superclass variableat execution time, the correct subclass version of the method is called, based

on the type of the reference stored in the superclass variable.

As another example, suppose we design a video game that manipulates objects of many different

types, including objects of classes Martian , Venusian , Plutonian , SpaceShip and LaserBeam .

Imagine that each class inherits from the common superclass called SpaceObject , which

contains method draw . Each subclass implements this method. A screen-manager program

maintains a collection (e.g., a SpaceObject array) of references to objects of the various classes.

To refresh the screen, the screen manager periodically sends each object the same

messagenamely, draw . However, each object responds in a unique way. For example, a Martian

object might draw itself in red with the appropriate number of antennae. A SpaceShip object

might draw itself as a bright silver flying saucer. A LaserBeam object might draw itself as a

Introduction to Scientific Programming Using Java Page 119

bright red beam across the screen. Again, the same message (in this case, draw) sent to a variety

of objects has "many forms" of results.

A polymorphic screen manager might use polymorphism to facilitate adding new classes to a

system with minimal modifications to the system's code. Suppose that we want to add

Mercurian objects to our video game. To do so, we must build a class Mercurian that extends

SpaceObject and provides its own draw method implementation. When objects of class

Mercurian appear in the SpaceObject collection, the screen manager code invokes method

draw , exactly as it does for every other object in the collection, regardless of its type. So the new

Mercurian objects simply "plug right in" without any modification of the screen manager code

by the programmer. Thus, without modifying the system (other than to build new classes and

modify the code that creates new objects), programmers can use polymorphism to include

additional types that were not envisioned when the system was created.

With polymorphism, the same method name and signature can be used to cause different actions

to occur, depending on the type of object on which the method is invoked. This gives the

programmer tremendous expressive capability.

Polymorphism enables programmers to deal in generalities and let the execution-time

environment handle the specifics. Programmers can command objects to behave in manners

appropriate to those objects, without knowing the types of the objects (as long as the objects

belong to the same inheritance hierarchy).

Demonstrating Polymorphic Behavior

In week fourteen created a commission employee class hierarchy, in which class

BasePlusCommissionEmployee inherited from class CommissionEmployee . The examples in

that section manipulated CommissionEmployee and BasePlusCommissionEmployee objects by

using references to them to invoke their methods. We aimed superclass references at superclass

objects and subclass references at subclass objects. These assignments are natural and

straightforwardsuperclass references are intended to refer to superclass objects, and subclass

references are intended to refer to subclass objects. However, as you will soon see, other

assignments are possible.

Introduction to Scientific Programming Using Java Page 120

In the next example, we aim a superclass reference at a subclass object. We then show how

invoking a method on a subclass object via a superclass reference invokes the subclass

functionalitythe type of the actual referenced object, not the type of the reference, determines

which method is called. This example demonstrates the key concept that an object of a subclass

can be treated as an object of its superclass. This enables various interesting manipulations. A

program can create an array of superclass references that refer to objects of many subclass types.

This is allowed because each subclass object is an object of its superclass. For instance, we can

assign the reference of a BasePlusCommissionEmployee object to a superclass

CommissionEmployee variable because a BasePlusCommissionEmployee is a

CommissionEmployee we can treat a BasePlusCommissionEmployee as a

CommissionEmployee .

As you will learn later in the chapter, we cannot treat a superclass object as a subclass object

because a superclass object is not an object of any of its subclasses. For example, we cannot

assign the reference of a CommissionEmployee object to a subclass

BasePlusCommissionEmployee variable because a CommissionEmployee is not a

BasePlusCommissionEmployee a CommissionEmployee does not have a baseSalary instance

variable and does not have methods setBaseSalary and getBaseSalary . The is-a relationship

applies only from a subclass to its direct (and indirect) superclasses, and not vice versa.

It turns out that the Java compiler does allow the assignment of a superclass reference to a

subclass variable if we explicitly cast the superclass reference to the subclass type. Why would

we ever want to perform such an assignment? A superclass reference can be used to invoke only

the methods declared in the superclass attempting to invoke subclass-only methods through a

superclass reference results in compilation errors. If a program needs to perform a subclass-

specific operation on a subclass object referenced by a superclass variable, the program must

first cast the superclass reference to a subclass reference through a technique known as

downcasting. This enables the program to invoke subclass methods that are not in the

superclass. We will show you a concrete example of downcasting later in the text.

 1 // Fig. 15.1: PolymorphismTest.java
 2 // Assigning superclass and subclass references to superclass and
 3 // subclass variables.

Introduction to Scientific Programming Using Java Page 121

 4
 5 public class PolymorphismTest
 6 {
 7 public static void main(String args[])
 8 {
 9 // assign superclass reference to superclass variab le
10 CommissionEmployee3 commissionEmployee = new CommissionEmployee3(
11 "Sue" , "Jones" , "222-22-2222" , 10000 , .06);
12
13 // assign subclass reference to subclass variable
14 BasePlusCommissionEmployee4 basePlusCommi ssionEmployee =
15 new BasePlusCommissionEmployee4(
16 "Bob" , "Lewis" , "333-33-3333" , 5000 , .04 , 300);
17
18 // invoke toString on superclass object using super class variable
19 System.out.printf("%s %s:\n\n%s\n\n" ,
20 "Call CommissionEmployee3's toString with superclas s reference
" ,
21 "to superclass object" , commissionEmployee.toString());
22
23 // invoke toString on subclass object using subclas s variable
24 System.out.printf("%s %s:\n\n%s\n\n" ,
25 "Call BasePlusCommissionEmployee4's toString with s ubclass" ,
26 "reference to subclass object" ,
27 basePlusCommissionEmployee.toString());
28
29 // invoke toString on subclass object using supercl ass variable
30 CommissionEmployee3 commissionEmployee2 =
31 basePlusCommissionEmployee;
32 System.out.printf("%s %s:\n\n%s\n" ,
33 "Call BasePlusCommissionEmployee4's toString with s uperclass" ,
34 "reference to subclass object" , commissionEmployee2.toString()
);
35 } // end main
36 } // end class PolymorphismTest

Call CommissionEmployee3's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee4's toString with su bclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Call BasePlusCommissionEmployee4's toString with su perclass reference to
subclass object:

Introduction to Scientific Programming Using Java Page 122

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

In Fig. 15.1, lines 10-11 create a CommissionEmployee3 object and assign its reference to a

CommissionEmployee3 variable. Lines 14-16 create a BasePlusCommissionEmployee4 object

and assign its reference to a BasePlusCommissionEmployee4 variable. These assignments are

naturalfor example, a CommissionEmployee3 variable's primary purpose is to hold a reference to

a CommissionEmployee3 object. Lines 19-21 use reference commissionEmployee to invoke

toString explicitly. Because commissionEmployee refers to a CommissionEmployee3 object,

superclass CommissionEmployee3 's version of toString is called. Similarly, lines 24-27 use

basePlusCommissionEmployee to invoke toString explicitly on the

BasePlusCommissionEmployee4 object. This invokes subclass

BasePlusCommissionEmployee4 's version of toString .

Lines 30-31 then assign the reference to subclass object basePlusCommissionEmployee to a

superclass CommissionEmployee3 variable, which lines 32-34 use to invoke method toString .

A superclass variable that contains a reference to a subclass object and is used to call a method

actually calls the subclass version of the method. Hence, commissionEmployee2.toString() in

line 34 actually calls class BasePlusCommissionEmployee4 's toString method. The Java

compiler allows this "crossover" because an object of a subclass is an object of its superclass (but

not vice versa). When the compiler encounters a method call made through a variable, the

compiler determines if the method can be called by checking the variable's class type. If that

class contains the proper method declaration (or inherits one), the compiler allows the call to be

compiled. At execution time, the type of the object to which the variable refers determines the

actual method to use.

Abstract Classes and Methods

When we think of a class type, we assume that programs will create objects of that type. In some

cases, however, it is useful to declare classes for which the programmer never intends to

Introduction to Scientific Programming Using Java Page 123

instantiate objects. Such classes are called abstract classes. Because they are used only as

superclasses in inheritance hierarchies, we refer to them as abstract superclasses. These classes

cannot be used to instantiate objects, because, as we will soon see, abstract classes are

incomplete. Subclasses must declare the "missing pieces." We demonstrate abstract classes in

later.

The purpose of an abstract class is primarily to provide an appropriate superclass from which

other classes can inherit and thus share a common design. In the Shape hierarchy for example,

subclasses inherit the notion of what it means to be a Shapecommon attributes such as location ,

color and borderThickness , and behaviors such as draw , move, resize and changeColor .

Classes that can be used to instantiate objects are called concrete classes. Such classes provide

implementations of every method they declare (some of the implementations can be inherited).

For example, we could derive concrete classes Circle , Square and triangle from abstract

superclass TwoDimensionalShape . Similarly, we could derive concrete classes Sphere , Cube

and Tetrahedron from abstract superclass THReeDimensionalShape . Abstract superclasses are

too general to create real objectsthey specify only what is common among subclasses. We need

to be more specific before we can create objects. For example, if you send the draw message to

abstract class TwoDimensionalShape , it knows that two-dimensional shapes should be drawable,

but it does not know what specific shape to draw, so it cannot implement a real draw method.

Concrete classes provide the specifics that make it reasonable to instantiate objects.

Not all inheritance hierarchies contain abstract classes. However, programmers often write client

code that uses only abstract superclass types to reduce client code's dependencies on a range of

specific subclass types. For example, a programmer can write a method with a parameter of an

abstract superclass type. When called, such a method can be passed an object of any concrete

class that directly or indirectly extends the superclass specified as the parameter's type.

Abstract classes sometimes constitute several levels of the hierarchy. For example, the Shape

hierarchy of begins with abstract class Shape . On the next level of the hierarchy are two more

abstract classes, TwoDimensionalShape and ThreeDimensionalShape . The next level of the

hierarchy declares concrete classes for TwoDimensionalShapes (Circle , Square and TRiangle)

and for ThreeDimensionalShapes (Sphere , Cube and TeTRahedron).

Introduction to Scientific Programming Using Java Page 124

You make a class abstract by declaring it with keyword abstract. An abstract class normally

contains one or more abstract methods. An abstract method is one with keyword abstract in

its declaration, as in

 public abstract void draw(); // abstract method

Abstract methods do not provide implementations. A class that contains any abstract methods

must be declared as an abstract class even if that class contains concrete (non-abstract) methods.

Each concrete subclass of an abstract superclass also must provide concrete implementations of

the superclass's abstract methods. Constructors and static methods cannot be declared

abstract . Constructors are not inherited, so an abstract constructor could never be

implemented. Similarly, subclasses cannot override static methods, so an abstract static

method could never be implemented.

Although we cannot instantiate objects of abstract superclasses, you will soon see that we can

use abstract superclasses to declare variables that can hold references to objects of any concrete

class derived from those abstract classes. Programs typically use such variables to manipulate

subclass objects polymorphically. We also can use abstract superclass names to invoke static

methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display many

shapes, including new shape types that the programmer will add to the system after writing the

drawing program. The drawing program might need to display shapes, such as Circles ,

TRiangles , Rectangles or others, that derive from abstract superclass Shape . The drawing

program uses Shape variables to manage the objects that are displayed. To draw any object in

this inheritance hierarchy, the drawing program uses a superclass Shape variable containing a

reference to the subclass object to invoke the object's draw method. This method is declared

abstract in superclass Shape , so each concrete subclass must implement method draw in a

manner specific to that shape. Each object in the Shape inheritance hierarchy knows how to draw

itself. The drawing program does not have to worry about the type of each object or whether the

drawing program has ever encountered objects of that type.

Introduction to Scientific Programming Using Java Page 125

Polymorphism is particularly effective for implementing so-called layered software systems. In

operating systems, for example, each type of physical device could operate quite differently from

the others. Even so, commands to read or write data from and to devices may have a certain

uniformity. For each device, the operating system uses a piece of software called a device driver

to control all communication between the system and the device. The write message sent to a

device-driver object needs to be interpreted specifically in the context of that driver and how it

manipulates devices of a specific type. However, the write call itself really is no different from

the write to any other device in the system: Place some number of bytes from memory onto that

device. An object-oriented operating system might use an abstract superclass to provide an

"interface" appropriate for all device drivers. Then, through inheritance from that abstract

superclass, subclasses are formed that all behave similarly. The device driver methods are

declared as abstract methods in the abstract superclass. The implementations of these abstract

methods are provided in the subclasses that correspond to the specific types of device drivers.

New devices are always being developed, and often long after the operating system has been

released. When you buy a new device, it comes with a device driver provided by the device

vendor. The device is immediately operational after you connect it to your computer and install

the driver. This is another elegant example of how polymorphism makes systems extensible.

Creating Abstract Superclass Employee

Class Employee (Fig. 15.4) provides methods earnings and toString , in addition to the get and

set methods that manipulate Employee 's instance variables. An earnings method certainly

applies generically to all employees. But each earnings calculation depends on the employee's

class. So we declare earnings as abstract in superclass Employee because a default

implementation does not make sense for that methodthere is not enough information to

determine what amount earnings should return. Each subclass overrides earnings with an

appropriate implementation. To calculate an employee's earnings, the program assigns a

reference to the employee's object to a superclass Employee variable, then invokes the earnings

method on that variable. We maintain an array of Employee variables, each of which holds a

reference to an Employee object (of course, there cannot be Employee objects because Employee

is an abstract classbecause of inheritance, however, all objects of all subclasses of Employee may

nevertheless be thought of as Employee objects). The program iterates through the array and

Introduction to Scientific Programming Using Java Page 126

calls method earnings for each Employee object. Java processes these method calls

polymorphically. Including earnings as an abstract method in Employee forces every direct

subclass of Employee to override earnings in order to become a concrete class. This enables the

designer of the class hierarchy to demand that each subclass provide an appropriate pay

calculation.

Method toString in class Employee returns a String containing the first name, last name and

social security number of the employee. As we will see, each subclass of Employee overrides

method toString to create a string representation of an object of that class that contains the

employee's type (e.g., "salaried employee:") followed by the rest of the employee's

information.

The diagram in Fig. 15.3 shows each of the five classes in the hierarchy down the left side and

methods earnings and toString across the top. For each class, the diagram shows the desired

results of each method. [Note: We do not list superclass Employee 's get and set methods because

they are not overridden in any of the subclasseseach of these methods is inherited and used "as

is" by each of the subclasses.]

 1 // Fig. 15.4: Employee.java
 2 // Employee abstract superclass.
 3
 4 public abstract class Employee
 5 {
 6 private String firstName;
 7 private String lastName;
 8 private String socialSecurityNumber;
 9
10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first;
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()

Introduction to Scientific Programming Using Java Page 127

26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last;
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 public String toString()
56 {
57 return String.format("%s %s\nsocial security number: %s" ,
58 getFirstName(), getLastName(), getSoci alSecurityNumber());
59 } // end method toString
60
61 // abstract method overridden by subclasses
62 public abstract double earnings(); // no implementation here
63 } // end abstract class Employee

Why did we decide to declare earnings as an abstract method? It simply does not make sense

to provide an implementation of this method in class Employee . We cannot calculate the

earnings for a general Employee we first must know the specific Employee type to determine the

appropriate earnings calculation. By declaring this method abstract , we indicate that each

concrete subclass must provide an appropriate earnings implementation and that a program will

be able to use superclass Employee variables to invoke method earnings polymorphically for

any type of Employee .

Introduction to Scientific Programming Using Java Page 128

 Creating Concrete Subclass SalariedEmployee

Class SalariedEmployee (Fig. 15.5) extends class Employee (line 4) and overrides earnings

(lines 29-32), which makes SalariedEmployee a concrete class. The class includes a constructor

(lines 9-14) that takes a first name, a last name, a social security number and a weekly salary as

arguments; a set method to assign a new non-negative value to instance variable weeklySalary

(lines 17-20); a get method to return weeklySalary 's value (lines 23-26); a method earnings

(lines 29-32) to calculate a SalariedEmployee 's earnings; and a method toString (lines 35-39),

which returns a String including the employee's type, namely, "salaried employee:"

followed by employee-specific information produced by superclass Employee 's toString

method and SalariedEmployee 's getWeeklySalary method. Class SalariedEmployee 's

constructor passes the first name, last name and social security number to the Employee

constructor (line 12) to initialize the private instance variables not inherited from the

superclass. Method earnings overrides abstract method earnings in Employee to provide a

concrete implementation that returns the SalariedEmployee 's weekly salary. If we do not

implement earnings , class SalariedEmployee must be declared abstract otherwise, a

compilation error occurs (and, of course, we want SalariedEmployee here to be a concrete

class).

 1 // Fig. 10.5: SalariedEmployee.java
 2 // SalariedEmployee class extends Employee.
 3
 4 public class SalariedEmployee extends Employee
 5 {
 6 private double weeklySalary;
 7
 8 // four-argument constructor
 9 public SalariedEmployee(String first, String last, Strin g ssn,
10 double salary)
11 {
12 super (first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21
22 // return salary
23 public double getWeeklySalary()

Introduction to Scientific Programming Using Java Page 129

24 {
25 return weeklySalary;
26 } // end method getWeeklySalary
27
28 // calculate earnings; override abstract method ear nings in Employee
29 public double earnings()
30 {
31 return getWeeklySalary();
32 } // end method earnings
33
34 // return String representation of SalariedEmployee object
35 public String toString()
36 {
37 return String.format("salaried employee: %s\n%s: $%,.2f" ,
38 super .toString(), "weekly salary" , getWeeklySalary());
39 } // end method toString
40 } // end class SalariedEmployee

Method toString (lines 35-39) of class SalariedEmployee overrides Employee method

toString . If class SalariedEmployee did not override toString , SalariedEmployee would

have inherited the Employee version of toString . In that case, SalariedEmployee 's toString

method would simply return the employee's full name and social security number, which does

not adequately represent a SalariedEmployee . To produce a complete string representation of a

SalariedEmployee , the subclass's toString method returns "salaried employee:" followed

by the superclass Employee -specific information (i.e., first name, last name and social security

number) obtained by invoking the superclass's toString (line 38)this is a nice example of code

reuse. The string representation of a SalariedEmployee also contains the employee's weekly

salary obtained by invoking the class's getWeeklySalary method.

	Cover
	Table of Contents
	Week 1:
	Week 2:
	Week 3:
	Week 4:
	Week5:
	Week 7:
	Week 8:
	Week 9:
	Week 10:
	Week 11:
	WEEK 12
	Week 14:
	Week 15:
	Return to Table

